Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1403.4699
Cited By
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
19 March 2014
Lin Xiao
Tong Zhang
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Proximal Stochastic Gradient Method with Progressive Variance Reduction"
50 / 94 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
31
0
0
28 Jan 2025
OledFL: Unleashing the Potential of Decentralized Federated Learning via Opposite Lookahead Enhancement
Qinglun Li
Miao Zhang
Mengzhu Wang
Quanjun Yin
Li Shen
OODD
FedML
19
0
0
09 Oct 2024
Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms
Bin Gu
Xiyuan Wei
Hualin Zhang
Yi Chang
Heng-Chiao Huang
FedML
21
0
0
03 Oct 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
35
0
0
19 Jul 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
76
11
0
08 Feb 2024
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
25
1
0
09 Nov 2023
GBM-based Bregman Proximal Algorithms for Constrained Learning
Zhenwei Lin
Qi Deng
24
1
0
21 Aug 2023
Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs with Short Burn-In Time
Xiang Ji
Gen Li
OffRL
30
7
0
24 May 2023
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
17
11
0
15 Apr 2023
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Jinyan Su
Changhong Zhao
Di Wang
12
3
0
31 Mar 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
27
6
0
09 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
32
2
0
09 Jan 2023
FSCNN: A Fast Sparse Convolution Neural Network Inference System
Bo Ji
Tianyi Chen
18
3
0
17 Dec 2022
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
13
3
0
28 Nov 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
11
1
0
23 Aug 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
50
11
0
17 Jun 2022
Stochastic Gradient Methods with Preconditioned Updates
Abdurakhmon Sadiev
Aleksandr Beznosikov
Abdulla Jasem Almansoori
Dmitry Kamzolov
R. Tappenden
Martin Takáč
ODL
21
9
0
01 Jun 2022
Data-Consistent Local Superresolution for Medical Imaging
Junqi Tang
SupR
25
0
0
22 Feb 2022
MSTGD:A Memory Stochastic sTratified Gradient Descent Method with an Exponential Convergence Rate
Aixiang Chen
Chen
Jinting Zhang
Zanbo Zhang
Zhihong Li
35
0
0
21 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
18
15
0
05 Feb 2022
On the Complexity of a Practical Primal-Dual Coordinate Method
Ahmet Alacaoglu
V. Cevher
Stephen J. Wright
19
12
0
19 Jan 2022
Accelerated and instance-optimal policy evaluation with linear function approximation
Tianjiao Li
Guanghui Lan
A. Pananjady
OffRL
32
13
0
24 Dec 2021
Distributed stochastic proximal algorithm with random reshuffling for non-smooth finite-sum optimization
Xia Jiang
Xianlin Zeng
Jian Sun
Jie Chen
Lihua Xie
11
6
0
06 Nov 2021
An Asymptotic Analysis of Minibatch-Based Momentum Methods for Linear Regression Models
Yuan Gao
Xuening Zhu
Haobo Qi
Guodong Li
Riquan Zhang
Hansheng Wang
11
3
0
02 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
25
1
0
25 Oct 2021
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
25
14
0
22 Oct 2021
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
17
4
0
19 Oct 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
30
14
0
21 Mar 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
19
51
0
14 Feb 2021
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
30
15
0
10 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
19
0
0
26 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
30
27
0
14 Aug 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi-An Ma
40
23
0
18 Jun 2020
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
23
83
0
22 Feb 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
17
4
0
13 Feb 2020
A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression
Jiajin Li
Sen Huang
Anthony Man-Cho So
OOD
14
12
0
28 Oct 2019
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
23
30
0
22 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
23
83
0
18 Sep 2019
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
14
11
0
15 Sep 2019
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
6
236
0
27 Aug 2019
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints
Qihang Lin
Selvaprabu Nadarajah
Negar Soheili
Tianbao Yang
19
13
0
07 Aug 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
26
185
0
05 Jun 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
17
134
0
18 Apr 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
13
2
0
21 Mar 2019
Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
Feihu Huang
Bin Gu
Zhouyuan Huo
Songcan Chen
Heng-Chiao Huang
10
26
0
16 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
11
139
0
15 Feb 2019
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
R. L. Jin
Tianbao Yang
32
40
0
28 Nov 2018
First-order Newton-type Estimator for Distributed Estimation and Inference
Xi Chen
Weidong Liu
Yichen Zhang
22
48
0
28 Nov 2018
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
J. Zhang
Hongyi Zhang
S. Sra
16
39
0
10 Nov 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
1
2
Next