Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1403.4699
Cited By
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
19 March 2014
Lin Xiao
Tong Zhang
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Proximal Stochastic Gradient Method with Progressive Variance Reduction"
50 / 108 papers shown
Title
Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
Feihu Huang
Bin Gu
Zhouyuan Huo
Songcan Chen
Heng-Chiao Huang
12
26
0
16 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
11
139
0
15 Feb 2019
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
R. L. Jin
Tianbao Yang
37
40
0
28 Nov 2018
First-order Newton-type Estimator for Distributed Estimation and Inference
Xi Chen
Weidong Liu
Yichen Zhang
30
48
0
28 Nov 2018
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
Junzhe Zhang
Hongyi Zhang
S. Sra
21
39
0
10 Nov 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Analysis of nonsmooth stochastic approximation: the differential inclusion approach
Szymon Majewski
B. Miasojedow
Eric Moulines
11
49
0
04 May 2018
Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
35
46
0
20 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
27
31
0
13 Feb 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
39
116
0
13 Feb 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
44
52
0
12 Feb 2018
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
ConvSCCS: convolutional self-controlled case series model for lagged adverse event detection
Maryan Morel
Emmanuel Bacry
Stéphane Gaïffas
Agathe Guilloux
F. Leroy
19
14
0
21 Dec 2017
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
28
245
0
29 Aug 2017
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
J. Lee
Yuekai Sun
27
15
0
28 Aug 2017
Variance-Reduced Stochastic Learning under Random Reshuffling
Bicheng Ying
Kun Yuan
Ali H. Sayed
25
13
0
04 Aug 2017
Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization
Tomoya Murata
Taiji Suzuki
OffRL
33
28
0
01 Mar 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
28
596
0
01 Mar 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
16
54
0
21 Feb 2017
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
23
10
0
29 Oct 2016
Analysis and Implementation of an Asynchronous Optimization Algorithm for the Parameter Server
Arda Aytekin
Hamid Reza Feyzmahdavian
M. Johansson
16
54
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
45
1,876
0
08 Oct 2016
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
A. Bietti
Julien Mairal
44
36
0
04 Oct 2016
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
25
13
0
04 Oct 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
23
96
0
12 Sep 2016
Convexified Convolutional Neural Networks
Yuchen Zhang
Percy Liang
Martin J. Wainwright
24
64
0
04 Sep 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
18
138
0
27 Jul 2016
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
Tianlin Li
Shiqian Ma
D. Goldfarb
Wei Liu
21
176
0
05 Jul 2016
AdaNet: Adaptive Structural Learning of Artificial Neural Networks
Corinna Cortes
X. Gonzalvo
Vitaly Kuznetsov
M. Mohri
Scott Yang
29
282
0
05 Jul 2016
Accelerate Stochastic Subgradient Method by Leveraging Local Growth Condition
Yi Tian Xu
Qihang Lin
Tianbao Yang
28
11
0
04 Jul 2016
Variance-Reduced Proximal Stochastic Gradient Descent for Non-convex Composite optimization
Xiyu Yu
Dacheng Tao
19
5
0
02 Jun 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
14
32
0
24 May 2016
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
22
239
0
23 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
17
54
0
23 May 2016
Accelerated Randomized Mirror Descent Algorithms For Composite Non-strongly Convex Optimization
L. Hien
Cuong V Nguyen
Huan Xu
Canyi Lu
Jiashi Feng
20
19
0
23 May 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
18
210
0
20 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
40
182
0
13 May 2016
Stochastic Variance-Reduced ADMM
Shuai Zheng
James T. Kwok
44
59
0
24 Apr 2016
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
19
13
0
22 Mar 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
575
0
18 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
16
390
0
17 Mar 2016
Kalman-based Stochastic Gradient Method with Stop Condition and Insensitivity to Conditioning
V. Patel
15
35
0
03 Dec 2015
Stochastic modified equations and adaptive stochastic gradient algorithms
Qianxiao Li
Cheng Tai
E. Weinan
30
279
0
19 Nov 2015
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark W. Schmidt
Jakub Konecný
Scott Sallinen
8
134
0
05 Nov 2015
New Optimisation Methods for Machine Learning
Aaron Defazio
41
6
0
09 Oct 2015
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
38
194
0
23 Jun 2015
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
16
56
0
10 May 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
25
273
0
16 Apr 2015
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields
Mark W. Schmidt
Reza Babanezhad
Mohamed Osama Ahmed
Aaron Defazio
Ann Clifton
Anoop Sarkar
35
83
0
16 Apr 2015
Previous
1
2
3
Next