ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.4699
  4. Cited By
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction

A Proximal Stochastic Gradient Method with Progressive Variance Reduction

19 March 2014
Lin Xiao
Tong Zhang
    ODL
ArXivPDFHTML

Papers citing "A Proximal Stochastic Gradient Method with Progressive Variance Reduction"

50 / 108 papers shown
Title
Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth
  Optimization
Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
Feihu Huang
Bin Gu
Zhouyuan Huo
Songcan Chen
Heng-Chiao Huang
12
26
0
16 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite
  Nonconvex Optimization
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
11
139
0
15 Feb 2019
Stochastic Optimization for DC Functions and Non-smooth Non-convex
  Regularizers with Non-asymptotic Convergence
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
R. L. Jin
Tianbao Yang
37
40
0
28 Nov 2018
First-order Newton-type Estimator for Distributed Estimation and
  Inference
First-order Newton-type Estimator for Distributed Estimation and Inference
Xi Chen
Weidong Liu
Yichen Zhang
30
48
0
28 Nov 2018
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with
  Curvature Independent Rate
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
Junzhe Zhang
Hongyi Zhang
S. Sra
21
39
0
10 Nov 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence
  Rates
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Analysis of nonsmooth stochastic approximation: the differential
  inclusion approach
Analysis of nonsmooth stochastic approximation: the differential inclusion approach
Szymon Majewski
B. Miasojedow
Eric Moulines
11
49
0
04 May 2018
Stochastic Variance-Reduced Cubic Regularization for Nonconvex
  Optimization
Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
35
46
0
20 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
27
31
0
13 Feb 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex
  Optimization
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
39
116
0
13 Feb 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex
  Optimization
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
44
52
0
12 Feb 2018
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
ConvSCCS: convolutional self-controlled case series model for lagged
  adverse event detection
ConvSCCS: convolutional self-controlled case series model for lagged adverse event detection
Maryan Morel
Emmanuel Bacry
Stéphane Gaïffas
Agathe Guilloux
F. Leroy
19
14
0
21 Dec 2017
Natasha 2: Faster Non-Convex Optimization Than SGD
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
28
245
0
29 Aug 2017
An inexact subsampled proximal Newton-type method for large-scale
  machine learning
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
J. Lee
Yuekai Sun
27
15
0
28 Aug 2017
Variance-Reduced Stochastic Learning under Random Reshuffling
Variance-Reduced Stochastic Learning under Random Reshuffling
Bicheng Ying
Kun Yuan
Ali H. Sayed
25
13
0
04 Aug 2017
Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for
  Regularized Empirical Risk Minimization
Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization
Tomoya Murata
Taiji Suzuki
OffRL
33
28
0
01 Mar 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic
  Recursive Gradient
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
28
596
0
01 Mar 2017
Memory and Communication Efficient Distributed Stochastic Optimization
  with Minibatch-Prox
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
16
54
0
21 Feb 2017
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
23
10
0
29 Oct 2016
Analysis and Implementation of an Asynchronous Optimization Algorithm
  for the Parameter Server
Analysis and Implementation of an Asynchronous Optimization Algorithm for the Parameter Server
Arda Aytekin
Hamid Reza Feyzmahdavian
M. Johansson
16
54
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
45
1,876
0
08 Oct 2016
Stochastic Optimization with Variance Reduction for Infinite Datasets
  with Finite-Sum Structure
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
A. Bietti
Julien Mairal
44
36
0
04 Oct 2016
An Inexact Variable Metric Proximal Point Algorithm for Generic
  Quasi-Newton Acceleration
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
25
13
0
04 Oct 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient
  Method
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
23
96
0
12 Sep 2016
Convexified Convolutional Neural Networks
Convexified Convolutional Neural Networks
Yuchen Zhang
Percy Liang
Martin J. Wainwright
24
64
0
04 Sep 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
18
138
0
27 Jul 2016
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
Tianlin Li
Shiqian Ma
D. Goldfarb
Wei Liu
21
176
0
05 Jul 2016
AdaNet: Adaptive Structural Learning of Artificial Neural Networks
AdaNet: Adaptive Structural Learning of Artificial Neural Networks
Corinna Cortes
X. Gonzalvo
Vitaly Kuznetsov
M. Mohri
Scott Yang
29
282
0
05 Jul 2016
Accelerate Stochastic Subgradient Method by Leveraging Local Growth
  Condition
Accelerate Stochastic Subgradient Method by Leveraging Local Growth Condition
Yi Tian Xu
Qihang Lin
Tianbao Yang
28
11
0
04 Jul 2016
Variance-Reduced Proximal Stochastic Gradient Descent for Non-convex Composite optimization
Xiyu Yu
Dacheng Tao
19
5
0
02 Jun 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical
  Accuracy
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
14
32
0
24 May 2016
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
22
239
0
23 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
17
54
0
23 May 2016
Accelerated Randomized Mirror Descent Algorithms For Composite
  Non-strongly Convex Optimization
Accelerated Randomized Mirror Descent Algorithms For Composite Non-strongly Convex Optimization
L. Hien
Cuong V Nguyen
Huan Xu
Canyi Lu
Jiashi Feng
20
19
0
23 May 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
18
210
0
20 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
40
182
0
13 May 2016
Stochastic Variance-Reduced ADMM
Stochastic Variance-Reduced ADMM
Shuai Zheng
James T. Kwok
44
59
0
24 Apr 2016
Trading-off variance and complexity in stochastic gradient descent
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
19
13
0
22 Mar 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
575
0
18 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
16
390
0
17 Mar 2016
Kalman-based Stochastic Gradient Method with Stop Condition and
  Insensitivity to Conditioning
Kalman-based Stochastic Gradient Method with Stop Condition and Insensitivity to Conditioning
V. Patel
15
35
0
03 Dec 2015
Stochastic modified equations and adaptive stochastic gradient
  algorithms
Stochastic modified equations and adaptive stochastic gradient algorithms
Qianxiao Li
Cheng Tai
E. Weinan
30
279
0
19 Nov 2015
Stop Wasting My Gradients: Practical SVRG
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark W. Schmidt
Jakub Konecný
Scott Sallinen
8
134
0
05 Nov 2015
New Optimisation Methods for Machine Learning
New Optimisation Methods for Machine Learning
Aaron Defazio
41
6
0
09 Oct 2015
On Variance Reduction in Stochastic Gradient Descent and its
  Asynchronous Variants
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
38
194
0
23 Jun 2015
Towards stability and optimality in stochastic gradient descent
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
16
56
0
10 May 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
25
273
0
16 Apr 2015
Non-Uniform Stochastic Average Gradient Method for Training Conditional
  Random Fields
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields
Mark W. Schmidt
Reza Babanezhad
Mohamed Osama Ahmed
Aaron Defazio
Ann Clifton
Anoop Sarkar
35
83
0
16 Apr 2015
Previous
123
Next