ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10281
40
23

Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization

18 June 2020
Chaobing Song
Yong Jiang
Yi-An Ma
ArXivPDFHTML
Abstract

In this paper, we introduce a simplified and unified method for finite-sum convex optimization, named \emph{Variance Reduction via Accelerated Dual Averaging (VRADA)}. In both general convex and strongly convex settings, VRADA can attain an O(1n)O\big(\frac{1}{n}\big)O(n1​)-accurate solution in O(nlog⁡log⁡n)O(n\log\log n)O(nloglogn) number of stochastic gradient evaluations which improves the best-known result O(nlog⁡n)O(n\log n)O(nlogn), where nnn is the number of samples. Meanwhile, VRADA matches the lower bound of the general convex setting up to a log⁡log⁡n\log\log nloglogn factor and matches the lower bounds in both regimes n≤Θ(κ)n\le \Theta(\kappa)n≤Θ(κ) and n≫κn\gg \kappan≫κ of the strongly convex setting, where κ\kappaκ denotes the condition number. Besides improving the best-known results and matching all the above lower bounds simultaneously, VRADA has more unified and simplified algorithmic implementation and convergence analysis for both the general convex and strongly convex settings. The underlying novel approaches such as the novel initialization strategy in VRADA may be of independent interest. Through experiments on real datasets, we show the good performance of VRADA over existing methods for large-scale machine learning problems.

View on arXiv
Comments on this paper