ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.4306
  4. Cited By
Student-t Processes as Alternatives to Gaussian Processes

Student-t Processes as Alternatives to Gaussian Processes

18 February 2014
Amar Shah
A. Wilson
Zoubin Ghahramani
    GP
ArXivPDFHTML

Papers citing "Student-t Processes as Alternatives to Gaussian Processes"

50 / 80 papers shown
Title
From Target Tracking to Targeting Track -- Part III: Stochastic Process Modeling and Online Learning
Tiancheng Li
Jingyuan Wang
Guchong Li
Dengwei Gao
55
2
0
03 Mar 2025
Student-t processes as infinite-width limits of posterior Bayesian neural networks
Student-t processes as infinite-width limits of posterior Bayesian neural networks
Francesco Caporali
Stefano Favaro
Dario Trevisan
BDL
230
0
0
06 Feb 2025
Robust Gaussian Processes via Relevance Pursuit
Robust Gaussian Processes via Relevance Pursuit
Sebastian Ament
Elizabeth Santorella
David Eriksson
Ben Letham
Maximilian Balandat
E. Bakshy
GP
41
0
0
08 Jan 2025
Gearing Gaussian process modeling and sequential design towards
  stochastic simulators
Gearing Gaussian process modeling and sequential design towards stochastic simulators
M. Binois
A. Fadikar
Abby Stevens
82
0
0
10 Dec 2024
Information Geometry and Beta Link for Optimizing Sparse Variational
  Student-t Processes
Information Geometry and Beta Link for Optimizing Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
John Paisley
19
0
0
13 Aug 2024
A Learning-Based Model Predictive Contouring Control for Vehicle Evasive
  Manoeuvres
A Learning-Based Model Predictive Contouring Control for Vehicle Evasive Manoeuvres
A. Bertipaglia
Mohsen Alirezaei
R. Happee
Barys Shyrokau
20
0
0
08 Aug 2024
Computationally efficient multi-level Gaussian process regression for
  functional data observed under completely or partially regular sampling
  designs
Computationally efficient multi-level Gaussian process regression for functional data observed under completely or partially regular sampling designs
Adam Gorm Hoffmann
C. T. Ekstrøm
Andreas Kryger Jensen
15
0
0
19 Jun 2024
Enhanced Bayesian Optimization via Preferential Modeling of Abstract
  Properties
Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties
V. ArunKumarA.
A. Shilton
Sunil R. Gupta
Santu Rana
S. Greenhill
Svetha Venkatesh
13
4
0
27 Feb 2024
Logistic-beta processes for dependent random probabilities with beta marginals
Logistic-beta processes for dependent random probabilities with beta marginals
Changwoo J. Lee
Alessandro Zito
Huiyan Sang
David B. Dunson
11
0
0
10 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
47
27
0
01 Feb 2024
Beyond Regrets: Geometric Metrics for Bayesian Optimization
Beyond Regrets: Geometric Metrics for Bayesian Optimization
Jungtaek Kim
29
0
0
03 Jan 2024
Robust Estimation of Causal Heteroscedastic Noise Models
Robust Estimation of Causal Heteroscedastic Noise Models
Quang-Duy Tran
Bao Duong
Phuoc Nguyen
Thin Nguyen
19
1
0
15 Dec 2023
Sparse Variational Student-t Processes
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
28
1
0
09 Dec 2023
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Hermanni Hälvä
Jonathan So
Richard Turner
Aapo Hyvarinen
CML
42
2
0
28 Nov 2023
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
30
2
0
21 Nov 2023
Online Student-$t$ Processes with an Overall-local Scale Structure for
  Modelling Non-stationary Data
Online Student-ttt Processes with an Overall-local Scale Structure for Modelling Non-stationary Data
Taole Sha
Michael Minyi Zhang
16
0
0
01 Nov 2023
Local Kernel Renormalization as a mechanism for feature learning in
  overparametrized Convolutional Neural Networks
Local Kernel Renormalization as a mechanism for feature learning in overparametrized Convolutional Neural Networks
R. Aiudi
R. Pacelli
A. Vezzani
R. Burioni
P. Rotondo
MLT
21
15
0
21 Jul 2023
PFNs4BO: In-Context Learning for Bayesian Optimization
PFNs4BO: In-Context Learning for Bayesian Optimization
Samuel G. Müller
Matthias Feurer
Noah Hollmann
Frank Hutter
30
34
0
27 May 2023
Deep Stochastic Processes via Functional Markov Transition Operators
Deep Stochastic Processes via Functional Markov Transition Operators
Jin Xu
Emilien Dupont
Kaspar Martens
Tom Rainforth
Yee Whye Teh
38
4
0
24 May 2023
Bayesian inference with finitely wide neural networks
Bayesian inference with finitely wide neural networks
Chi-Ken Lu
BDL
37
0
0
06 Mar 2023
An Empirical Analysis of the Advantages of Finite- v.s. Infinite-Width
  Bayesian Neural Networks
An Empirical Analysis of the Advantages of Finite- v.s. Infinite-Width Bayesian Neural Networks
Jiayu Yao
Yaniv Yacoby
Beau Coker
Weiwei Pan
Finale Doshi-Velez
24
1
0
16 Nov 2022
MARS: Meta-Learning as Score Matching in the Function Space
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
37
4
0
24 Oct 2022
Bayesian Learning via Q-Exponential Process
Bayesian Learning via Q-Exponential Process
Shuyi Li
Michael O'Connor
Shiwei Lan
30
2
0
14 Oct 2022
Non-Gaussian Process Regression
Non-Gaussian Process Regression
Y. Kindap
S. Godsill
GP
13
1
0
07 Sep 2022
Scale invariant process regression: Towards Bayesian ML with minimal
  assumptions
Scale invariant process regression: Towards Bayesian ML with minimal assumptions
Matthias Wieler
13
0
0
22 Aug 2022
A Two-Stage Bayesian Optimisation for Automatic Tuning of an Unscented
  Kalman Filter for Vehicle Sideslip Angle Estimation
A Two-Stage Bayesian Optimisation for Automatic Tuning of an Unscented Kalman Filter for Vehicle Sideslip Angle Estimation
A. Bertipaglia
Barys Shyrokau
Mohsen Alirezaei
Department of Mechanical Engineering
45
14
0
30 Jun 2022
Spatial meshing for general Bayesian multivariate models
Spatial meshing for general Bayesian multivariate models
M. Peruzzi
David B. Dunson
90
6
0
25 Jan 2022
Non-smooth Bayesian Optimization in Tuning Problems
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
Scale Mixtures of Neural Network Gaussian Processes
Scale Mixtures of Neural Network Gaussian Processes
Hyungi Lee
Eunggu Yun
Hongseok Yang
Juho Lee
UQCV
BDL
13
7
0
03 Jul 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
One-parameter family of acquisition functions for efficient global
  optimization
One-parameter family of acquisition functions for efficient global optimization
T. Kanazawa
35
2
0
26 Apr 2021
Partially Observed Exchangeable Modeling
Partially Observed Exchangeable Modeling
Yang Li
Junier B. Oliva
20
5
0
11 Feb 2021
Explaining Inference Queries with Bayesian Optimization
Explaining Inference Queries with Bayesian Optimization
Brandon Lockhart
Jinglin Peng
Weiyuan Wu
Jiannan Wang
Eugene Wu
21
7
0
10 Feb 2021
Deep kernel processes
Deep kernel processes
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
BDL
24
41
0
04 Oct 2020
t-Soft Update of Target Network for Deep Reinforcement Learning
t-Soft Update of Target Network for Deep Reinforcement Learning
Taisuke Kobayashi
Wendyam Eric Lionel Ilboudo
87
50
0
25 Aug 2020
Bayesian Quadrature Optimization for Probability Threshold Robustness
  Measure
Bayesian Quadrature Optimization for Probability Threshold Robustness Measure
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
TPM
29
11
0
22 Jun 2020
Energy-Based Processes for Exchangeable Data
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
22
12
0
17 Mar 2020
The Elliptical Processes: a Family of Fat-tailed Stochastic Processes
The Elliptical Processes: a Family of Fat-tailed Stochastic Processes
Maria Bånkestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
23
1
0
13 Mar 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Chi-Ken Lu
Patrick Shafto
19
5
0
07 Feb 2020
Transport Gaussian Processes for Regression
Transport Gaussian Processes for Regression
Gonzalo Rios
GP
21
6
0
30 Jan 2020
TPLVM: Portfolio Construction by Student's $t$-process Latent Variable
  Model
TPLVM: Portfolio Construction by Student's ttt-process Latent Variable Model
Y. Uchiyama
Kei Nakagawa
19
9
0
29 Jan 2020
Robust Gaussian Process Regression with a Bias Model
Robust Gaussian Process Regression with a Bias Model
Chiwoo Park
David J. Borth
Nicholas S. Wilson
Chad N. Hunter
F. Friedersdorf
25
27
0
14 Jan 2020
Heteroscedastic Gaussian Process Regression on the Alkenone over Sea
  Surface Temperatures
Heteroscedastic Gaussian Process Regression on the Alkenone over Sea Surface Temperatures
Etienne Brangbour
Marco Chini
11
8
0
18 Dec 2019
Kalman Filter Tuning with Bayesian Optimization
Kalman Filter Tuning with Bayesian Optimization
Zhaozhong Chen
Nisar R. Ahmed
S. Julier
Christoffer Heckman
11
13
0
17 Dec 2019
Set Flow: A Permutation Invariant Normalizing Flow
Set Flow: A Permutation Invariant Normalizing Flow
Kashif Rasul
Ingmar Schuster
Roland Vollgraf
Urs M. Bergmann
BDL
3DPC
DRL
17
5
0
06 Sep 2019
A review of Approximate Bayesian Computation methods via density
  estimation: inference for simulator-models
A review of Approximate Bayesian Computation methods via density estimation: inference for simulator-models
C. Grazian
Yanan Fan
TPM
24
22
0
06 Sep 2019
Stochastic quasi-Newton with line-search regularization
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
19
21
0
03 Sep 2019
Interpretable deep Gaussian processes with moments
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
18
19
0
27 May 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
22
235
0
14 Mar 2019
Financial Applications of Gaussian Processes and Bayesian Optimization
Financial Applications of Gaussian Processes and Bayesian Optimization
Joan Gonzalvez
Edmond Lezmi
T. Roncalli
Jiali Xu
20
54
0
12 Mar 2019
12
Next