Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.4306
Cited By
Student-t Processes as Alternatives to Gaussian Processes
18 February 2014
Amar Shah
A. Wilson
Zoubin Ghahramani
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Student-t Processes as Alternatives to Gaussian Processes"
50 / 80 papers shown
Title
From Target Tracking to Targeting Track -- Part III: Stochastic Process Modeling and Online Learning
Tiancheng Li
Jingyuan Wang
Guchong Li
Dengwei Gao
55
2
0
03 Mar 2025
Student-t processes as infinite-width limits of posterior Bayesian neural networks
Francesco Caporali
Stefano Favaro
Dario Trevisan
BDL
230
0
0
06 Feb 2025
Robust Gaussian Processes via Relevance Pursuit
Sebastian Ament
Elizabeth Santorella
David Eriksson
Ben Letham
Maximilian Balandat
E. Bakshy
GP
41
0
0
08 Jan 2025
Gearing Gaussian process modeling and sequential design towards stochastic simulators
M. Binois
A. Fadikar
Abby Stevens
82
0
0
10 Dec 2024
Information Geometry and Beta Link for Optimizing Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
John Paisley
19
0
0
13 Aug 2024
A Learning-Based Model Predictive Contouring Control for Vehicle Evasive Manoeuvres
A. Bertipaglia
Mohsen Alirezaei
R. Happee
Barys Shyrokau
20
0
0
08 Aug 2024
Computationally efficient multi-level Gaussian process regression for functional data observed under completely or partially regular sampling designs
Adam Gorm Hoffmann
C. T. Ekstrøm
Andreas Kryger Jensen
15
0
0
19 Jun 2024
Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties
V. ArunKumarA.
A. Shilton
Sunil R. Gupta
Santu Rana
S. Greenhill
Svetha Venkatesh
13
4
0
27 Feb 2024
Logistic-beta processes for dependent random probabilities with beta marginals
Changwoo J. Lee
Alessandro Zito
Huiyan Sang
David B. Dunson
11
0
0
10 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
47
27
0
01 Feb 2024
Beyond Regrets: Geometric Metrics for Bayesian Optimization
Jungtaek Kim
29
0
0
03 Jan 2024
Robust Estimation of Causal Heteroscedastic Noise Models
Quang-Duy Tran
Bao Duong
Phuoc Nguyen
Thin Nguyen
19
1
0
15 Dec 2023
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
28
1
0
09 Dec 2023
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Hermanni Hälvä
Jonathan So
Richard Turner
Aapo Hyvarinen
CML
42
2
0
28 Nov 2023
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
30
2
0
21 Nov 2023
Online Student-
t
t
t
Processes with an Overall-local Scale Structure for Modelling Non-stationary Data
Taole Sha
Michael Minyi Zhang
16
0
0
01 Nov 2023
Local Kernel Renormalization as a mechanism for feature learning in overparametrized Convolutional Neural Networks
R. Aiudi
R. Pacelli
A. Vezzani
R. Burioni
P. Rotondo
MLT
21
15
0
21 Jul 2023
PFNs4BO: In-Context Learning for Bayesian Optimization
Samuel G. Müller
Matthias Feurer
Noah Hollmann
Frank Hutter
30
34
0
27 May 2023
Deep Stochastic Processes via Functional Markov Transition Operators
Jin Xu
Emilien Dupont
Kaspar Martens
Tom Rainforth
Yee Whye Teh
38
4
0
24 May 2023
Bayesian inference with finitely wide neural networks
Chi-Ken Lu
BDL
37
0
0
06 Mar 2023
An Empirical Analysis of the Advantages of Finite- v.s. Infinite-Width Bayesian Neural Networks
Jiayu Yao
Yaniv Yacoby
Beau Coker
Weiwei Pan
Finale Doshi-Velez
24
1
0
16 Nov 2022
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
37
4
0
24 Oct 2022
Bayesian Learning via Q-Exponential Process
Shuyi Li
Michael O'Connor
Shiwei Lan
30
2
0
14 Oct 2022
Non-Gaussian Process Regression
Y. Kindap
S. Godsill
GP
13
1
0
07 Sep 2022
Scale invariant process regression: Towards Bayesian ML with minimal assumptions
Matthias Wieler
13
0
0
22 Aug 2022
A Two-Stage Bayesian Optimisation for Automatic Tuning of an Unscented Kalman Filter for Vehicle Sideslip Angle Estimation
A. Bertipaglia
Barys Shyrokau
Mohsen Alirezaei
Department of Mechanical Engineering
45
14
0
30 Jun 2022
Spatial meshing for general Bayesian multivariate models
M. Peruzzi
David B. Dunson
90
6
0
25 Jan 2022
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
Scale Mixtures of Neural Network Gaussian Processes
Hyungi Lee
Eunggu Yun
Hongseok Yang
Juho Lee
UQCV
BDL
13
7
0
03 Jul 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
One-parameter family of acquisition functions for efficient global optimization
T. Kanazawa
35
2
0
26 Apr 2021
Partially Observed Exchangeable Modeling
Yang Li
Junier B. Oliva
20
5
0
11 Feb 2021
Explaining Inference Queries with Bayesian Optimization
Brandon Lockhart
Jinglin Peng
Weiyuan Wu
Jiannan Wang
Eugene Wu
21
7
0
10 Feb 2021
Deep kernel processes
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
BDL
24
41
0
04 Oct 2020
t-Soft Update of Target Network for Deep Reinforcement Learning
Taisuke Kobayashi
Wendyam Eric Lionel Ilboudo
87
50
0
25 Aug 2020
Bayesian Quadrature Optimization for Probability Threshold Robustness Measure
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
TPM
29
11
0
22 Jun 2020
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
22
12
0
17 Mar 2020
The Elliptical Processes: a Family of Fat-tailed Stochastic Processes
Maria Bånkestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
23
1
0
13 Mar 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Chi-Ken Lu
Patrick Shafto
19
5
0
07 Feb 2020
Transport Gaussian Processes for Regression
Gonzalo Rios
GP
21
6
0
30 Jan 2020
TPLVM: Portfolio Construction by Student's
t
t
t
-process Latent Variable Model
Y. Uchiyama
Kei Nakagawa
19
9
0
29 Jan 2020
Robust Gaussian Process Regression with a Bias Model
Chiwoo Park
David J. Borth
Nicholas S. Wilson
Chad N. Hunter
F. Friedersdorf
25
27
0
14 Jan 2020
Heteroscedastic Gaussian Process Regression on the Alkenone over Sea Surface Temperatures
Etienne Brangbour
Marco Chini
11
8
0
18 Dec 2019
Kalman Filter Tuning with Bayesian Optimization
Zhaozhong Chen
Nisar R. Ahmed
S. Julier
Christoffer Heckman
11
13
0
17 Dec 2019
Set Flow: A Permutation Invariant Normalizing Flow
Kashif Rasul
Ingmar Schuster
Roland Vollgraf
Urs M. Bergmann
BDL
3DPC
DRL
17
5
0
06 Sep 2019
A review of Approximate Bayesian Computation methods via density estimation: inference for simulator-models
C. Grazian
Yanan Fan
TPM
24
22
0
06 Sep 2019
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
19
21
0
03 Sep 2019
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
18
19
0
27 May 2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
22
235
0
14 Mar 2019
Financial Applications of Gaussian Processes and Bayesian Optimization
Joan Gonzalvez
Edmond Lezmi
T. Roncalli
Jiali Xu
20
54
0
12 Mar 2019
1
2
Next