ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.00564
16
0

Online Student-ttt Processes with an Overall-local Scale Structure for Modelling Non-stationary Data

1 November 2023
Taole Sha
Michael Minyi Zhang
ArXivPDFHTML
Abstract

Time-dependent data often exhibit characteristics, such as non-stationarity and heavy-tailed errors, that would be inappropriate to model with the typical assumptions used in popular models. Thus, more flexible approaches are required to be able to accommodate such issues. To this end, we propose a Bayesian mixture of student-ttt processes with an overall-local scale structure for the covariance. Moreover, we use a sequential Monte Carlo (SMC) sampler in order to perform online inference as data arrive in real-time. We demonstrate the superiority of our proposed approach compared to typical Gaussian process-based models on real-world data sets in order to prove the necessity of using mixtures of student-ttt processes.

View on arXiv
Comments on this paper