ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.2388
  4. Cited By
Minimizing Finite Sums with the Stochastic Average Gradient
v1v2 (latest)

Minimizing Finite Sums with the Stochastic Average Gradient

10 September 2013
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
ArXiv (abs)PDFHTML

Papers citing "Minimizing Finite Sums with the Stochastic Average Gradient"

50 / 506 papers shown
Title
Convergence of Gradient Algorithms for Nonconvex C^{1+alpha} Cost
  Functions
Convergence of Gradient Algorithms for Nonconvex C^{1+alpha} Cost Functions
Zixuan Wang
Shanjian Tang
31
0
0
01 Dec 2020
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for
  Acceleration
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration
Michael B. Cohen
Aaron Sidford
Kevin Tian
77
41
0
12 Nov 2020
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
  Filtering
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
79
6
0
09 Nov 2020
Gradient-Based Empirical Risk Minimization using Local Polynomial
  Regression
Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
Ali Jadbabaie
A. Makur
Devavrat Shah
406
6
0
04 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
93
111
0
03 Nov 2020
Asynchronous Parallel Stochastic Quasi-Newton Methods
Asynchronous Parallel Stochastic Quasi-Newton Methods
Qianqian Tong
Guannan Liang
Xingyu Cai
Chunjiang Zhu
J. Bi
ODL
86
9
0
02 Nov 2020
Tight Lower Complexity Bounds for Strongly Convex Finite-Sum
  Optimization
Tight Lower Complexity Bounds for Strongly Convex Finite-Sum Optimization
Min Zhang
Yao Shu
Kun He
37
1
0
17 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
79
73
0
07 Oct 2020
Variance-Reduced Methods for Machine Learning
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
109
117
0
02 Oct 2020
A variable metric mini-batch proximal stochastic recursive gradient
  algorithm with diagonal Barzilai-Borwein stepsize
A variable metric mini-batch proximal stochastic recursive gradient algorithm with diagonal Barzilai-Borwein stepsize
Tengteng Yu
Xinwei Liu
Yuhong Dai
Jie Sun
84
4
0
02 Oct 2020
Understanding the Role of Adversarial Regularization in Supervised
  Learning
Understanding the Role of Adversarial Regularization in Supervised Learning
Litu Rout
44
3
0
01 Oct 2020
Projection-Free Adaptive Gradients for Large-Scale Optimization
Projection-Free Adaptive Gradients for Large-Scale Optimization
Cyrille W. Combettes
Christoph Spiegel
Sebastian Pokutta
ODL
92
11
0
29 Sep 2020
Cross Learning in Deep Q-Networks
Cross Learning in Deep Q-Networks
Xing Wang
A. Vinel
25
2
0
29 Sep 2020
A general framework for decentralized optimization with first-order
  methods
A general framework for decentralized optimization with first-order methods
Ran Xin
Shi Pu
Angelia Nedić
U. Khan
65
89
0
12 Sep 2020
Neural Neighborhood Encoding for Classification
Neural Neighborhood Encoding for Classification
Kaushik Sinha
Parikshit Ram
67
1
0
19 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for
  Multi-Party Vertically Collaborative Learning
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
99
30
0
14 Aug 2020
A Survey on Large-scale Machine Learning
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
84
112
0
10 Aug 2020
On the Regularization Effect of Stochastic Gradient Descent applied to
  Least Squares
On the Regularization Effect of Stochastic Gradient Descent applied to Least Squares
Stefan Steinerberger
23
1
0
27 Jul 2020
Langevin Monte Carlo: random coordinate descent and variance reduction
Langevin Monte Carlo: random coordinate descent and variance reduction
Zhiyan Ding
Qin Li
BDL
52
12
0
26 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
59
50
0
08 Jul 2020
Conditional gradient methods for stochastically constrained convex
  minimization
Conditional gradient methods for stochastically constrained convex minimization
Maria-Luiza Vladarean
Ahmet Alacaoglu
Ya-Ping Hsieh
Volkan Cevher
49
3
0
07 Jul 2020
Streaming Complexity of SVMs
Streaming Complexity of SVMs
Alexandr Andoni
Collin Burns
Yi Li
S. Mahabadi
David P. Woodruff
47
5
0
07 Jul 2020
Stochastic Stein Discrepancies
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
113
38
0
06 Jul 2020
A Multilevel Approach to Training
A Multilevel Approach to Training
Vanessa Braglia
Alena Kopanicáková
Rolf Krause
26
2
0
28 Jun 2020
Dual-Free Stochastic Decentralized Optimization with Variance Reduction
Dual-Free Stochastic Decentralized Optimization with Variance Reduction
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
52
26
0
25 Jun 2020
Unified Analysis of Stochastic Gradient Methods for Composite Convex and
  Smooth Optimization
Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization
Ahmed Khaled
Othmane Sebbouh
Nicolas Loizou
Robert Mansel Gower
Peter Richtárik
119
47
0
20 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
120
76
0
18 Jun 2020
AdaS: Adaptive Scheduling of Stochastic Gradients
AdaS: Adaptive Scheduling of Stochastic Gradients
Mahdi S. Hosseini
Konstantinos N. Plataniotis
ODL
77
12
0
11 Jun 2020
Variance reduction for Random Coordinate Descent-Langevin Monte Carlo
Variance reduction for Random Coordinate Descent-Langevin Monte Carlo
Zhiyan Ding
Qin Li
BDL
42
0
0
10 Jun 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
55
10
0
06 Jun 2020
Improved SVRG for quadratic functions
Improved SVRG for quadratic functions
N. Kahalé
40
0
0
01 Jun 2020
CoolMomentum: A Method for Stochastic Optimization by Langevin Dynamics
  with Simulated Annealing
CoolMomentum: A Method for Stochastic Optimization by Langevin Dynamics with Simulated Annealing
O. Borysenko
M. Byshkin
ODL
56
14
0
29 May 2020
Boosting First-Order Methods by Shifting Objective: New Schemes with
  Faster Worst-Case Rates
Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
59
5
0
25 May 2020
An Optimal Algorithm for Decentralized Finite Sum Optimization
An Optimal Algorithm for Decentralized Finite Sum Optimization
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulie
66
45
0
20 May 2020
A Riemannian Primal-dual Algorithm Based on Proximal Operator and its
  Application in Metric Learning
A Riemannian Primal-dual Algorithm Based on Proximal Operator and its Application in Metric Learning
Shijun Wang
Baocheng Zhu
Lintao Ma
Yuan Qi
32
0
0
19 May 2020
The Impact of the Mini-batch Size on the Variance of Gradients in
  Stochastic Gradient Descent
The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent
Xin-Yao Qian
Diego Klabjan
ODL
72
36
0
27 Apr 2020
F2A2: Flexible Fully-decentralized Approximate Actor-critic for
  Cooperative Multi-agent Reinforcement Learning
F2A2: Flexible Fully-decentralized Approximate Actor-critic for Cooperative Multi-agent Reinforcement Learning
Wenhao Li
Bo Jin
Xiangfeng Wang
Junchi Yan
H. Zha
100
21
0
17 Apr 2020
Analysis of Stochastic Gradient Descent in Continuous Time
Analysis of Stochastic Gradient Descent in Continuous Time
J. Latz
81
41
0
15 Apr 2020
Communication-efficient Variance-reduced Stochastic Gradient Descent
Communication-efficient Variance-reduced Stochastic Gradient Descent
H. S. Ghadikolaei
Sindri Magnússon
54
3
0
10 Mar 2020
Buffered Asynchronous SGD for Byzantine Learning
Buffered Asynchronous SGD for Byzantine Learning
Yi-Rui Yang
Wu-Jun Li
FedML
38
5
0
02 Mar 2020
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar
Gideon Dresdner
Alicia Y. Tsai
L. Ghaoui
Francesco Locatello
Robert M. Freund
Fabian Pedregosa
76
25
0
27 Feb 2020
General Framework for Binary Classification on Top Samples
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
47
5
0
25 Feb 2020
Can speed up the convergence rate of stochastic gradient methods to
  $\mathcal{O}(1/k^2)$ by a gradient averaging strategy?
Can speed up the convergence rate of stochastic gradient methods to O(1/k2)\mathcal{O}(1/k^2)O(1/k2) by a gradient averaging strategy?
Xin Xu
Xiaopeng Luo
23
1
0
25 Feb 2020
Statistical Adaptive Stochastic Gradient Methods
Statistical Adaptive Stochastic Gradient Methods
Pengchuan Zhang
Hunter Lang
Qiang Liu
Lin Xiao
ODL
74
11
0
25 Feb 2020
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
  Non-uniform Subsampling of Gradients
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via Non-uniform Subsampling of Gradients
Ruilin Li
Xin Wang
H. Zha
Molei Tao
34
4
0
20 Feb 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic
  Gradient Methods
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
49
4
0
13 Feb 2020
Gradient tracking and variance reduction for decentralized optimization
  and machine learning
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
49
10
0
13 Feb 2020
On the Complexity of Minimizing Convex Finite Sums Without Using the
  Indices of the Individual Functions
On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions
Yossi Arjevani
Amit Daniely
Stefanie Jegelka
Hongzhou Lin
63
2
0
09 Feb 2020
Adaptive Stochastic Optimization
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
48
29
0
18 Jan 2020
Stochastic Recursive Variance Reduction for Efficient Smooth Non-Convex
  Compositional Optimization
Stochastic Recursive Variance Reduction for Efficient Smooth Non-Convex Compositional Optimization
Huizhuo Yuan
Xiangru Lian
Ji Liu
60
13
0
31 Dec 2019
Previous
12345...91011
Next