Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark W. Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 503 papers shown
Title
Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
Ali Jadbabaie
A. Makur
Devavrat Shah
28
6
0
04 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
35
109
0
03 Nov 2020
Asynchronous Parallel Stochastic Quasi-Newton Methods
Qianqian Tong
Guannan Liang
Xingyu Cai
Chunjiang Zhu
J. Bi
ODL
24
9
0
02 Nov 2020
Tight Lower Complexity Bounds for Strongly Convex Finite-Sum Optimization
Min Zhang
Yao Shu
Kun He
13
1
0
17 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
6
68
0
07 Oct 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
111
0
02 Oct 2020
A variable metric mini-batch proximal stochastic recursive gradient algorithm with diagonal Barzilai-Borwein stepsize
Tengteng Yu
Xinwei Liu
Yuhong Dai
Jie Sun
10
4
0
02 Oct 2020
Understanding the Role of Adversarial Regularization in Supervised Learning
Litu Rout
12
3
0
01 Oct 2020
Projection-Free Adaptive Gradients for Large-Scale Optimization
Cyrille W. Combettes
Christoph Spiegel
Sebastian Pokutta
ODL
18
10
0
29 Sep 2020
Cross Learning in Deep Q-Networks
Xing Wang
A. Vinel
9
2
0
29 Sep 2020
A general framework for decentralized optimization with first-order methods
Ran Xin
Shi Pu
Angelia Nedić
U. Khan
16
87
0
12 Sep 2020
Neural Neighborhood Encoding for Classification
Kaushik Sinha
Parikshit Ram
25
1
0
19 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
38
27
0
14 Aug 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
19
109
0
10 Aug 2020
On the Regularization Effect of Stochastic Gradient Descent applied to Least Squares
Stefan Steinerberger
9
1
0
27 Jul 2020
Langevin Monte Carlo: random coordinate descent and variance reduction
Zhiyan Ding
Qin Li
BDL
17
11
0
26 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
Conditional gradient methods for stochastically constrained convex minimization
Maria-Luiza Vladarean
Ahmet Alacaoglu
Ya-Ping Hsieh
V. Cevher
6
3
0
07 Jul 2020
Streaming Complexity of SVMs
Alexandr Andoni
Collin Burns
Yi Li
S. Mahabadi
David P. Woodruff
17
5
0
07 Jul 2020
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
30
37
0
06 Jul 2020
A Multilevel Approach to Training
Vanessa Braglia
Alena Kopanicáková
Rolf Krause
10
2
0
28 Jun 2020
Dual-Free Stochastic Decentralized Optimization with Variance Reduction
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
11
25
0
25 Jun 2020
Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization
Ahmed Khaled
Othmane Sebbouh
Nicolas Loizou
Robert Mansel Gower
Peter Richtárik
11
46
0
20 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
AdaS: Adaptive Scheduling of Stochastic Gradients
Mahdi S. Hosseini
Konstantinos N. Plataniotis
ODL
23
12
0
11 Jun 2020
Variance reduction for Random Coordinate Descent-Langevin Monte Carlo
Zhiyan Ding
Qin Li
BDL
15
0
0
10 Jun 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
11
10
0
06 Jun 2020
Improved SVRG for quadratic functions
N. Kahalé
17
0
0
01 Jun 2020
CoolMomentum: A Method for Stochastic Optimization by Langevin Dynamics with Simulated Annealing
O. Borysenko
M. Byshkin
ODL
19
14
0
29 May 2020
Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
14
5
0
25 May 2020
An Optimal Algorithm for Decentralized Finite Sum Optimization
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulie
9
45
0
20 May 2020
A Riemannian Primal-dual Algorithm Based on Proximal Operator and its Application in Metric Learning
Shijun Wang
Baocheng Zhu
Lintao Ma
Yuan Qi
8
0
0
19 May 2020
The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent
Xin-Yao Qian
Diego Klabjan
ODL
13
35
0
27 Apr 2020
F2A2: Flexible Fully-decentralized Approximate Actor-critic for Cooperative Multi-agent Reinforcement Learning
Wenhao Li
Bo Jin
Xiangfeng Wang
Junchi Yan
H. Zha
25
21
0
17 Apr 2020
Analysis of Stochastic Gradient Descent in Continuous Time
J. Latz
33
38
0
15 Apr 2020
Communication-efficient Variance-reduced Stochastic Gradient Descent
H. S. Ghadikolaei
Sindri Magnússon
4
3
0
10 Mar 2020
Buffered Asynchronous SGD for Byzantine Learning
Yi-Rui Yang
Wu-Jun Li
FedML
29
5
0
02 Mar 2020
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar
Gideon Dresdner
Alicia Y. Tsai
L. Ghaoui
Francesco Locatello
Robert M. Freund
Fabian Pedregosa
6
24
0
27 Feb 2020
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
29
5
0
25 Feb 2020
Can speed up the convergence rate of stochastic gradient methods to
O
(
1
/
k
2
)
\mathcal{O}(1/k^2)
O
(
1/
k
2
)
by a gradient averaging strategy?
Xin Xu
Xiaopeng Luo
11
1
0
25 Feb 2020
Statistical Adaptive Stochastic Gradient Methods
Pengchuan Zhang
Hunter Lang
Qiang Liu
Lin Xiao
ODL
15
11
0
25 Feb 2020
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via Non-uniform Subsampling of Gradients
Ruilin Li
Xin Wang
H. Zha
Molei Tao
10
4
0
20 Feb 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
19
10
0
13 Feb 2020
On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions
Yossi Arjevani
Amit Daniely
Stefanie Jegelka
Hongzhou Lin
19
2
0
09 Feb 2020
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
13
29
0
18 Jan 2020
Stochastic Recursive Variance Reduction for Efficient Smooth Non-Convex Compositional Optimization
Huizhuo Yuan
Xiangru Lian
Ji Liu
19
13
0
31 Dec 2019
Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine Attacks
Zhaoxian Wu
Qing Ling
Tianyi Chen
G. Giannakis
FedML
AAML
32
181
0
29 Dec 2019
Comparison of Classification Methods for Very High-Dimensional Data in Sparse Random Projection Representation
Anton Akusok
Emil Eirola
17
1
0
18 Dec 2019
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
29
1
0
11 Dec 2019
Previous
1
2
3
4
5
...
9
10
11
Next