Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark W. Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 503 papers shown
Title
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
19
62
0
18 Oct 2016
Analysis and Implementation of an Asynchronous Optimization Algorithm for the Parameter Server
Arda Aytekin
Hamid Reza Feyzmahdavian
M. Johansson
16
54
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
57
1,876
0
08 Oct 2016
Understanding intermediate layers using linear classifier probes
Guillaume Alain
Yoshua Bengio
FAtt
47
894
0
05 Oct 2016
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
A. Bietti
Julien Mairal
44
36
0
04 Oct 2016
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
28
13
0
04 Oct 2016
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
34
90
0
30 Sep 2016
Data Dependent Convergence for Distributed Stochastic Optimization
A. Bijral
9
0
0
30 Aug 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
16
150
0
24 Aug 2016
Fast and Simple Optimization for Poisson Likelihood Models
Niao He
Zaïd Harchaoui
Yichen Wang
Le Song
23
14
0
03 Aug 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
21
138
0
27 Jul 2016
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
19
14
0
15 Jun 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
19
3,172
0
15 Jun 2016
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
26
101
0
15 Jun 2016
On Projected Stochastic Gradient Descent Algorithm with Weighted Averaging for Least Squares Regression
Kobi Cohen
A. Nedić
R. Srikant
15
44
0
09 Jun 2016
Variance-Reduced Proximal Stochastic Gradient Descent for Non-convex Composite optimization
Xiyu Yu
Dacheng Tao
19
5
0
02 Jun 2016
Distributed Asynchronous Dual Free Stochastic Dual Coordinate Ascent
Zhouyuan Huo
Heng-Chiao Huang
6
1
0
29 May 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
29
96
0
29 May 2016
Stochastic Optimization for Large-scale Optimal Transport
Aude Genevay
Marco Cuturi
Gabriel Peyré
Francis R. Bach
OT
14
459
0
27 May 2016
Generalization Properties and Implicit Regularization for Multiple Passes SGM
Junhong Lin
Raffaello Camoriano
Lorenzo Rosasco
9
70
0
26 May 2016
Tight Complexity Bounds for Optimizing Composite Objectives
Blake E. Woodworth
Nathan Srebro
26
185
0
25 May 2016
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization
Davood Hajinezhad
Mingyi Hong
T. Zhao
Zhaoran Wang
22
45
0
25 May 2016
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
24
239
0
23 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
20
54
0
23 May 2016
A Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
J. Nocedal
Martin Takáč
ODL
16
110
0
19 May 2016
On the Iteration Complexity of Oblivious First-Order Optimization Algorithms
Yossi Arjevani
Ohad Shamir
18
33
0
11 May 2016
Empirical study of PROXTONE and PROXTONE
+
^+
+
for Fast Learning of Large Scale Sparse Models
Ziqiang Shi
Rujie Liu
23
0
0
18 Apr 2016
Algorithms for stochastic optimization with functional or expectation constraints
Guanghui Lan
Zhiqiang Zhou
12
50
0
13 Apr 2016
Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization
Zhouyuan Huo
Heng-Chiao Huang
17
48
0
12 Apr 2016
Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis
Weiran Wang
Jialei Wang
Dan Garber
Nathan Srebro
22
31
0
07 Apr 2016
Doubly Random Parallel Stochastic Methods for Large Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
4
15
0
22 Mar 2016
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
24
597
0
19 Mar 2016
Fast Incremental Method for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
18
44
0
19 Mar 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
575
0
18 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
16
390
0
17 Mar 2016
Optimal Black-Box Reductions Between Optimization Objectives
Zeyuan Allen-Zhu
Elad Hazan
11
96
0
17 Mar 2016
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
Chenxin Ma
Martin Takáč
28
10
0
16 Mar 2016
Starting Small -- Learning with Adaptive Sample Sizes
Hadi Daneshmand
Aurelien Lucchi
Thomas Hofmann
26
0
0
09 Mar 2016
Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems
Tomoya Murata
Taiji Suzuki
11
3
0
08 Mar 2016
Fast Nonsmooth Regularized Risk Minimization with Continuation
Shuai Zheng
Ruiliang Zhang
James T. Kwok
15
1
0
25 Feb 2016
Loss factorization, weakly supervised learning and label noise robustness
Giorgio Patrini
Frank Nielsen
Richard Nock
M. Carioni
NoLa
16
112
0
08 Feb 2016
A Simple Practical Accelerated Method for Finite Sums
Aaron Defazio
25
120
0
08 Feb 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
22
441
0
07 Feb 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
26
113
0
06 Feb 2016
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Zeyuan Allen-Zhu
Yang Yuan
Karthik Sridharan
15
27
0
05 Feb 2016
Reducing Runtime by Recycling Samples
Jialei Wang
Hai Wang
Nathan Srebro
37
3
0
05 Feb 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
16
16
0
30 Jan 2016
Sub-Sampled Newton Methods II: Local Convergence Rates
Farbod Roosta-Khorasani
Michael W. Mahoney
25
83
0
18 Jan 2016
Sub-Sampled Newton Methods I: Globally Convergent Algorithms
Farbod Roosta-Khorasani
Michael W. Mahoney
17
88
0
18 Jan 2016
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
27
197
0
13 Dec 2015
Previous
1
2
3
...
10
11
8
9
Next