Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
v1
v2 (latest)
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 506 papers shown
Title
Finding Approximate Local Minima Faster than Gradient Descent
Naman Agarwal
Zeyuan Allen-Zhu
Brian Bullins
Elad Hazan
Tengyu Ma
136
83
0
03 Nov 2016
Surpassing Gradient Descent Provably: A Cyclic Incremental Method with Linear Convergence Rate
Aryan Mokhtari
Mert Gurbuzbalaban
Alejandro Ribeiro
147
37
0
01 Nov 2016
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
79
10
0
29 Oct 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
177
62
0
18 Oct 2016
Analysis and Implementation of an Asynchronous Optimization Algorithm for the Parameter Server
Arda Aytekin
Hamid Reza Feyzmahdavian
M. Johansson
146
54
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
154
1,912
0
08 Oct 2016
Understanding intermediate layers using linear classifier probes
Guillaume Alain
Yoshua Bengio
FAtt
175
957
0
05 Oct 2016
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
A. Bietti
Julien Mairal
207
36
0
04 Oct 2016
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
90
13
0
04 Oct 2016
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
91
89
0
30 Sep 2016
Data Dependent Convergence for Distributed Stochastic Optimization
A. Bijral
19
0
0
30 Aug 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
73
150
0
24 Aug 2016
Fast and Simple Optimization for Poisson Likelihood Models
Niao He
Zaïd Harchaoui
Yichen Wang
Le Song
102
14
0
03 Aug 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
90
140
0
27 Jul 2016
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
71
14
0
15 Jun 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
274
3,228
0
15 Jun 2016
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
AI4TS
87
101
0
15 Jun 2016
On Projected Stochastic Gradient Descent Algorithm with Weighted Averaging for Least Squares Regression
Kobi Cohen
A. Nedić
R. Srikant
72
43
0
09 Jun 2016
Variance-Reduced Proximal Stochastic Gradient Descent for Non-convex Composite optimization
Xiyu Yu
Dacheng Tao
62
5
0
02 Jun 2016
Distributed Asynchronous Dual Free Stochastic Dual Coordinate Ascent
Zhouyuan Huo
Heng-Chiao Huang
31
1
0
29 May 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
73
63
0
29 May 2016
Stochastic Optimization for Large-scale Optimal Transport
Aude Genevay
Marco Cuturi
Gabriel Peyré
Francis R. Bach
OT
87
469
0
27 May 2016
Generalization Properties and Implicit Regularization for Multiple Passes SGM
Junhong Lin
Raffaello Camoriano
Lorenzo Rosasco
79
70
0
26 May 2016
Tight Complexity Bounds for Optimizing Composite Objectives
Blake E. Woodworth
Nathan Srebro
151
185
0
25 May 2016
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization
Davood Hajinezhad
Mingyi Hong
T. Zhao
Zhaoran Wang
83
45
0
25 May 2016
Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
Hongyi Zhang
Sashank J. Reddi
S. Sra
117
241
0
23 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
107
54
0
23 May 2016
A Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
J. Nocedal
Martin Takáč
ODL
106
112
0
19 May 2016
On the Iteration Complexity of Oblivious First-Order Optimization Algorithms
Yossi Arjevani
Ohad Shamir
82
33
0
11 May 2016
Empirical study of PROXTONE and PROXTONE
+
^+
+
for Fast Learning of Large Scale Sparse Models
Ziqiang Shi
Rujie Liu
45
0
0
18 Apr 2016
Algorithms for stochastic optimization with functional or expectation constraints
Guanghui Lan
Zhiqiang Zhou
75
50
0
13 Apr 2016
Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization
Zhouyuan Huo
Heng-Chiao Huang
95
49
0
12 Apr 2016
Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis
Weiran Wang
Jialei Wang
Dan Garber
Nathan Srebro
93
31
0
07 Apr 2016
Doubly Random Parallel Stochastic Methods for Large Scale Learning
Aryan Mokhtari
Alec Koppel
Alejandro Ribeiro
39
15
0
22 Mar 2016
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
127
604
0
19 Mar 2016
Fast Incremental Method for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
95
44
0
19 Mar 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
138
582
0
18 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
127
392
0
17 Mar 2016
Optimal Black-Box Reductions Between Optimization Objectives
Zeyuan Allen-Zhu
Elad Hazan
111
96
0
17 Mar 2016
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
Chenxin Ma
Martin Takáč
83
10
0
16 Mar 2016
Starting Small -- Learning with Adaptive Sample Sizes
Hadi Daneshmand
Aurelien Lucchi
Thomas Hofmann
46
0
0
09 Mar 2016
Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems
Tomoya Murata
Taiji Suzuki
33
3
0
08 Mar 2016
Fast Nonsmooth Regularized Risk Minimization with Continuation
Shuai Zheng
Ruiliang Zhang
James T. Kwok
42
1
0
25 Feb 2016
Loss factorization, weakly supervised learning and label noise robustness
Giorgio Patrini
Frank Nielsen
Richard Nock
M. Carioni
NoLa
194
114
0
08 Feb 2016
A Simple Practical Accelerated Method for Finite Sums
Aaron Defazio
155
121
0
08 Feb 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
181
451
0
07 Feb 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
111
117
0
06 Feb 2016
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Zeyuan Allen-Zhu
Yang Yuan
Karthik Sridharan
102
28
0
05 Feb 2016
Reducing Runtime by Recycling Samples
Jialei Wang
Hai Wang
Nathan Srebro
63
3
0
05 Feb 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
124
16
0
30 Jan 2016
Previous
1
2
3
...
10
11
8
9
Next