Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
v1
v2 (latest)
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 506 papers shown
Title
Unified analysis of SGD-type methods
Eduard A. Gorbunov
74
2
0
29 Mar 2023
Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization
Cheuk Yin Lin
Chaobing Song
Jelena Diakonikolas
44
6
0
28 Mar 2023
Convergence of variational Monte Carlo simulation and scale-invariant pre-training
Nilin Abrahamsen
Zhiyan Ding
Gil Goldshlager
Lin Lin
DRL
74
2
0
21 Mar 2023
PA&DA: Jointly Sampling PAth and DAta for Consistent NAS
Shunong Lu
Yu Hu
Longxing Yang
Zihao Sun
Jilin Mei
Jianchao Tan
Chengru Song
47
9
0
28 Feb 2023
Stochastic Gradient Descent under Markovian Sampling Schemes
Mathieu Even
67
29
0
28 Feb 2023
A Log-linear Gradient Descent Algorithm for Unbalanced Binary Classification using the All Pairs Squared Hinge Loss
Kyle R. Rust
T. Hocking
34
1
0
21 Feb 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
70
22
0
14 Feb 2023
On the Privacy-Robustness-Utility Trilemma in Distributed Learning
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
70
27
0
09 Feb 2023
Coordinating Distributed Example Orders for Provably Accelerated Training
A. Feder Cooper
Wentao Guo
Khiem Pham
Tiancheng Yuan
Charlie F. Ruan
Yucheng Lu
Chris De Sa
153
7
0
02 Feb 2023
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
53
0
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
56
3
0
12 Dec 2022
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
80
14
0
09 Dec 2022
Convergence of ease-controlled Random Reshuffling gradient Algorithms under Lipschitz smoothness
R. Seccia
Corrado Coppola
G. Liuzzi
L. Palagi
66
2
0
04 Dec 2022
Closing the gap between SVRG and TD-SVRG with Gradient Splitting
Arsenii Mustafin
Alexander Olshevsky
I. Paschalidis
31
1
0
29 Nov 2022
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
50
0
0
28 Oct 2022
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
Artavazd Maranjyan
M. Safaryan
Peter Richtárik
96
13
0
28 Oct 2022
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
Zhijing Wan
Zhixiang Wang
CheukTing Chung
Zheng Wang
87
10
0
21 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
83
2
0
12 Oct 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
45
1
0
23 Aug 2022
Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
101
6
0
22 Aug 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
94
1
0
17 Aug 2022
Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
Sally Dong
Haotian Jiang
Y. Lee
Swati Padmanabhan
Guanghao Ye
62
2
0
07 Aug 2022
FedVARP: Tackling the Variance Due to Partial Client Participation in Federated Learning
Divyansh Jhunjhunwala
Pranay Sharma
Aushim Nagarkatti
Gauri Joshi
FedML
100
67
0
28 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
52
2
0
17 Jul 2022
Benchopt: Reproducible, efficient and collaborative optimization benchmarks
Thomas Moreau
Mathurin Massias
Alexandre Gramfort
Pierre Ablin
Pierre-Antoine Bannier Benjamin Charlier
...
Binh Duc Nguyen
A. Rakotomamonjy
Zaccharie Ramzi
Joseph Salmon
Samuel Vaiter
124
36
0
27 Jun 2022
Gradient Descent for Low-Rank Functions
Romain Cosson
Ali Jadbabaie
A. Makur
Amirhossein Reisizadeh
Devavrat Shah
88
3
0
16 Jun 2022
Stability and Generalization of Stochastic Optimization with Nonconvex and Nonsmooth Problems
Yunwen Lei
37
19
0
14 Jun 2022
Federated Adversarial Training with Transformers
Ahmed Aldahdooh
W. Hamidouche
Olivier Déforges
FedML
ViT
83
2
0
05 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
38
0
0
01 Jun 2022
A principled framework for the design and analysis of token algorithms
Hadrien Hendrikx
FedML
79
16
0
30 May 2022
GraB: Finding Provably Better Data Permutations than Random Reshuffling
Yucheng Lu
Wentao Guo
Christopher De Sa
FedML
76
17
0
22 May 2022
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
M. Yousefi
Angeles Martinez
ODL
43
1
0
18 May 2022
Can We Do Better Than Random Start? The Power of Data Outsourcing
Yi Chen
Jing-rong Dong
Xin T. Tong
33
0
0
17 May 2022
Neighbor-Based Optimized Logistic Regression Machine Learning Model For Electric Vehicle Occupancy Detection
S. Shaw
Keaton Chia
J. Kleissl
20
1
0
28 Apr 2022
cu_FastTucker: A Faster and Stabler Stochastic Optimization for Parallel Sparse Tucker Decomposition on Multi-GPUs
Zixuan Li
135
2
0
14 Apr 2022
Stochastic Halpern Iteration with Variance Reduction for Stochastic Monotone Inclusions
Xu Cai
Chaobing Song
Cristóbal Guzmán
Jelena Diakonikolas
114
11
0
17 Mar 2022
Accelerated SGD for Non-Strongly-Convex Least Squares
Aditya Varre
Nicolas Flammarion
68
7
0
03 Mar 2022
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization
Gideon Dresdner
Maria-Luiza Vladarean
Olivier Fercoq
Francesco Locatello
Volkan Cevher
A. Yurtsever
41
1
0
26 Feb 2022
Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Methods
Yujia Jin
Aaron Sidford
Kevin Tian
81
31
0
09 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
77
15
0
05 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
110
7
0
01 Feb 2022
L-SVRG and L-Katyusha with Adaptive Sampling
Boxin Zhao
Boxiang Lyu
Mladen Kolar
75
3
0
31 Jan 2022
Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction
Zijian Liu
Ta Duy Nguyen
Alina Ene
Huy Le Nguyen
63
6
0
28 Jan 2022
Optimal variance-reduced stochastic approximation in Banach spaces
Wenlong Mou
K. Khamaru
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
81
9
0
21 Jan 2022
Quasi-Newton acceleration of EM and MM algorithms via Broyden
′
'
′
s method
Medha Agarwal
Jason Xu
23
1
0
15 Jan 2022
Federated Optimization of Smooth Loss Functions
Ali Jadbabaie
A. Makur
Devavrat Shah
FedML
425
7
0
06 Jan 2022
Accelerated and instance-optimal policy evaluation with linear function approximation
Tianjiao Li
Guanghui Lan
A. Pananjady
OffRL
91
13
0
24 Dec 2021
FedLGA: Towards System-Heterogeneity of Federated Learning via Local Gradient Approximation
Xingyu Li
Zhe Qu
Bo Tang
Zhuo Lu
FedML
109
28
0
22 Dec 2021
LoSAC: An Efficient Local Stochastic Average Control Method for Federated Optimization
Huiming Chen
Huandong Wang
Quanming Yao
Yong Li
Depeng Jin
Qiang Yang
FedML
65
5
0
15 Dec 2021
Federated Nearest Neighbor Classification with a Colony of Fruit-Flies: With Supplement
Parikshit Ram
Kaushik Sinha
FedML
67
1
0
14 Dec 2021
Previous
1
2
3
4
5
...
9
10
11
Next