Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark W. Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 503 papers shown
Title
Active Sampler: Light-weight Accelerator for Complex Data Analytics at Scale
Jinyang Gao
H. V. Jagadish
Beng Chin Ooi
12
18
0
12 Dec 2015
Efficient Distributed SGD with Variance Reduction
Soham De
Tom Goldstein
9
39
0
09 Dec 2015
Variance Reduction for Distributed Stochastic Gradient Descent
Soham De
Gavin Taylor
Tom Goldstein
12
8
0
05 Dec 2015
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Murat A. Erdogdu
21
13
0
28 Nov 2015
Fast clustering for scalable statistical analysis on structured images
B. Thirion
Andrés Hoyos-Idrobo
J. Kahn
Gaël Varoquaux
10
0
0
16 Nov 2015
Speed learning on the fly
Pierre-Yves Massé
Yann Ollivier
21
13
0
08 Nov 2015
Dual Free Adaptive Mini-batch SDCA for Empirical Risk Minimization
Xi He
Martin Takávc
17
1
0
22 Oct 2015
SGD with Variance Reduction beyond Empirical Risk Minimization
M. Achab
Agathe Guilloux
Stéphane Gaïffas
Emmanuel Bacry
19
5
0
16 Oct 2015
New Optimisation Methods for Machine Learning
Aaron Defazio
44
6
0
09 Oct 2015
Stochastic gradient descent methods for estimation with large data sets
Dustin Tran
Panos Toulis
E. Airoldi
4
14
0
22 Sep 2015
AdaDelay: Delay Adaptive Distributed Stochastic Convex Optimization
S. Sra
Adams Wei Yu
Mu Li
Alex Smola
ODL
15
30
0
20 Aug 2015
Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-Point Problem
Adams Wei Yu
Qihang Lin
Tianbao Yang
30
7
0
14 Aug 2015
Convergence rates of sub-sampled Newton methods
Murat A. Erdogdu
Andrea Montanari
32
155
0
12 Aug 2015
Distributed Mini-Batch SDCA
Martin Takáč
Peter Richtárik
Nathan Srebro
27
50
0
29 Jul 2015
A Bayesian Approach for Online Classifier Ensemble
Qinxun Bai
H. Lam
Stan Sclaroff
BDL
33
0
0
08 Jul 2015
An optimal randomized incremental gradient method
Guanghui Lan
Yi Zhou
28
220
0
08 Jul 2015
Stochastic Gradient Made Stable: A Manifold Propagation Approach for Large-Scale Optimization
Yadong Mu
Wei Liu
Wei Fan
31
32
0
28 Jun 2015
Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms
Yuchen Zhang
Michael I. Jordan
28
20
0
24 Jun 2015
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
38
194
0
23 Jun 2015
Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
Zhanxing Zhu
Amos J. Storkey
ODL
24
19
0
12 Jun 2015
Variance Reduced Stochastic Gradient Descent with Neighbors
Thomas Hofmann
Aurelien Lucchi
Simon Lacoste-Julien
Brian McWilliams
ODL
23
152
0
11 Jun 2015
Accelerated Stochastic Gradient Descent for Minimizing Finite Sums
Atsushi Nitanda
ODL
29
24
0
09 Jun 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
33
23
0
07 Jun 2015
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Zeyuan Allen-Zhu
Yang Yuan
21
195
0
05 Jun 2015
Efficient Elastic Net Regularization for Sparse Linear Models
Zachary Chase Lipton
Charles Elkan
11
4
0
24 May 2015
Mind the duality gap: safer rules for the Lasso
Olivier Fercoq
Alexandre Gramfort
Joseph Salmon
44
138
0
13 May 2015
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
18
56
0
10 May 2015
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields
Mark W. Schmidt
Reza Babanezhad
Mohamed Osama Ahmed
Aaron Defazio
Ann Clifton
Anoop Sarkar
35
83
0
16 Apr 2015
Expectation Propagation in the large-data limit
Guillaume P. Dehaene
Simon Barthelmé
21
44
0
27 Mar 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
40
97
0
08 Feb 2015
Microscopic Advances with Large-Scale Learning: Stochastic Optimization for Cryo-EM
A. Punjani
Marcus A. Brubaker
24
3
0
19 Jan 2015
Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
Yuchen Zhang
Lin Xiao
38
72
0
01 Jan 2015
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
24
130
0
27 Dec 2014
Constant Step Size Least-Mean-Square: Bias-Variance Trade-offs and Optimal Sampling Distributions
Alexandre Défossez
Francis R. Bach
23
13
0
29 Nov 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
35
58
0
21 Nov 2014
SelfieBoost: A Boosting Algorithm for Deep Learning
Shai Shalev-Shwartz
FedML
27
17
0
13 Nov 2014
A Lower Bound for the Optimization of Finite Sums
Alekh Agarwal
Léon Bottou
33
124
0
02 Oct 2014
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
43
261
0
10 Sep 2014
Global Convergence of Online Limited Memory BFGS
Aryan Mokhtari
Alejandro Ribeiro
19
164
0
06 Sep 2014
On Data Preconditioning for Regularized Loss Minimization
Tianbao Yang
R. L. Jin
Shenghuo Zhu
Qihang Lin
48
9
0
13 Aug 2014
Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems
Aaron Defazio
T. Caetano
Justin Domke
57
169
0
10 Jul 2014
A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization
Pascal Bianchi
W. Hachem
F. Iutzeler
56
57
0
03 Jul 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
44
1,810
0
01 Jul 2014
Randomized Block Coordinate Descent for Online and Stochastic Optimization
Huahua Wang
A. Banerjee
ODL
50
36
0
01 Jul 2014
Smoothed Gradients for Stochastic Variational Inference
Stephan Mandt
David M. Blei
BDL
DiffM
36
29
0
13 Jun 2014
Peacock: Learning Long-Tail Topic Features for Industrial Applications
Yi Wang
Xuemin Zhao
Zhenlong Sun
Hao Yan
Lifeng Wang
Zhihui Jin
Liubin Wang
Yang Gao
Ching Law
Jia Zeng
AI4TS
101
61
0
17 May 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
90
736
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
Fast X-ray CT image reconstruction using the linearized augmented Lagrangian method with ordered subsets
Hung Nien
Jeffrey A. Fessler
40
62
0
18 Feb 2014
Previous
1
2
3
...
10
11
9
Next