Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
v1
v2 (latest)
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 506 papers shown
Title
Sub-Sampled Newton Methods II: Local Convergence Rates
Farbod Roosta-Khorasani
Michael W. Mahoney
94
84
0
18 Jan 2016
Sub-Sampled Newton Methods I: Globally Convergent Algorithms
Farbod Roosta-Khorasani
Michael W. Mahoney
109
90
0
18 Jan 2016
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
128
197
0
13 Dec 2015
Active Sampler: Light-weight Accelerator for Complex Data Analytics at Scale
Jinyang Gao
H. V. Jagadish
Beng Chin Ooi
63
18
0
12 Dec 2015
Efficient Distributed SGD with Variance Reduction
Soham De
Tom Goldstein
84
40
0
09 Dec 2015
Variance Reduction for Distributed Stochastic Gradient Descent
Soham De
Gavin Taylor
Tom Goldstein
37
8
0
05 Dec 2015
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Murat A. Erdogdu
63
13
0
28 Nov 2015
Fast clustering for scalable statistical analysis on structured images
Bertrand Thirion
Andrés Hoyos-Idrobo
J. Kahn
Gaël Varoquaux
30
0
0
16 Nov 2015
Speed learning on the fly
Pierre-Yves Massé
Yann Ollivier
75
13
0
08 Nov 2015
Dual Free Adaptive Mini-batch SDCA for Empirical Risk Minimization
Xi He
Martin Takávc
83
1
0
22 Oct 2015
SGD with Variance Reduction beyond Empirical Risk Minimization
M. Achab
Agathe Guilloux
Stéphane Gaïffas
Emmanuel Bacry
97
5
0
16 Oct 2015
New Optimisation Methods for Machine Learning
Aaron Defazio
84
6
0
09 Oct 2015
Stochastic gradient descent methods for estimation with large data sets
Dustin Tran
Panos Toulis
E. Airoldi
53
14
0
22 Sep 2015
AdaDelay: Delay Adaptive Distributed Stochastic Convex Optimization
S. Sra
Adams Wei Yu
Mu Li
Alex Smola
ODL
74
30
0
20 Aug 2015
Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-Point Problem
Adams Wei Yu
Qihang Lin
Tianbao Yang
57
7
0
14 Aug 2015
Convergence rates of sub-sampled Newton methods
Murat A. Erdogdu
Andrea Montanari
108
157
0
12 Aug 2015
Distributed Mini-Batch SDCA
Martin Takáč
Peter Richtárik
Nathan Srebro
87
50
0
29 Jul 2015
A Bayesian Approach for Online Classifier Ensemble
Qinxun Bai
Henry Lam
Stan Sclaroff
BDL
57
0
0
08 Jul 2015
An optimal randomized incremental gradient method
Guanghui Lan
Yi Zhou
157
220
0
08 Jul 2015
Stochastic Gradient Made Stable: A Manifold Propagation Approach for Large-Scale Optimization
Yadong Mu
Wei Liu
Wei Fan
98
33
0
28 Jun 2015
Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms
Yuchen Zhang
Michael I. Jordan
92
20
0
24 Jun 2015
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
146
196
0
23 Jun 2015
Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
Zhanxing Zhu
Amos J. Storkey
ODL
141
19
0
12 Jun 2015
Variance Reduced Stochastic Gradient Descent with Neighbors
Thomas Hofmann
Aurelien Lucchi
Simon Lacoste-Julien
Brian McWilliams
ODL
86
154
0
11 Jun 2015
Accelerated Stochastic Gradient Descent for Minimizing Finite Sums
Atsushi Nitanda
ODL
108
24
0
09 Jun 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
92
23
0
07 Jun 2015
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Zeyuan Allen-Zhu
Yang Yuan
116
199
0
05 Jun 2015
Efficient Elastic Net Regularization for Sparse Linear Models
Zachary Chase Lipton
Charles Elkan
68
4
0
24 May 2015
Mind the duality gap: safer rules for the Lasso
Olivier Fercoq
Alexandre Gramfort
Joseph Salmon
132
140
0
13 May 2015
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
102
56
0
10 May 2015
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields
Mark Schmidt
Reza Babanezhad
Mohamed Osama Ahmed
Aaron Defazio
Ann Clifton
Anoop Sarkar
96
83
0
16 Apr 2015
Expectation Propagation in the large-data limit
Guillaume P. Dehaene
Simon Barthelmé
93
44
0
27 Mar 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
137
97
0
27 Feb 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
126
99
0
08 Feb 2015
Microscopic Advances with Large-Scale Learning: Stochastic Optimization for Cryo-EM
A. Punjani
Marcus A. Brubaker
42
3
0
19 Jan 2015
Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
Yuchen Zhang
Lin Xiao
177
72
0
01 Jan 2015
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
83
130
0
27 Dec 2014
Constant Step Size Least-Mean-Square: Bias-Variance Trade-offs and Optimal Sampling Distributions
Alexandre Défossez
Francis R. Bach
108
13
0
29 Nov 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
155
58
0
21 Nov 2014
SelfieBoost: A Boosting Algorithm for Deep Learning
Shai Shalev-Shwartz
FedML
77
17
0
13 Nov 2014
A Lower Bound for the Optimization of Finite Sums
Alekh Agarwal
Léon Bottou
191
124
0
02 Oct 2014
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
122
265
0
10 Sep 2014
Global Convergence of Online Limited Memory BFGS
Aryan Mokhtari
Alejandro Ribeiro
78
164
0
06 Sep 2014
On Data Preconditioning for Regularized Loss Minimization
Tianbao Yang
Rong Jin
Shenghuo Zhu
Qihang Lin
161
9
0
13 Aug 2014
Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems
Aaron Defazio
T. Caetano
Justin Domke
115
169
0
10 Jul 2014
A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization
Pascal Bianchi
W. Hachem
F. Iutzeler
150
57
0
03 Jul 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
143
1,830
0
01 Jul 2014
Randomized Block Coordinate Descent for Online and Stochastic Optimization
Huahua Wang
A. Banerjee
ODL
149
36
0
01 Jul 2014
Smoothed Gradients for Stochastic Variational Inference
Stephan Mandt
David M. Blei
BDL
DiffM
101
29
0
13 Jun 2014
Peacock: Learning Long-Tail Topic Features for Industrial Applications
Yi Wang
Xuemin Zhao
Zhenlong Sun
Hao Yan
Lifeng Wang
Zhihui Jin
Liubin Wang
Yang Gao
Ching Law
Jia Zeng
AI4TS
179
61
0
17 May 2014
Previous
1
2
3
...
10
11
9
Next