ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.01017
17
0

Improved SVRG for quadratic functions

1 June 2020
N. Kahalé
ArXivPDFHTML
Abstract

We analyse an iterative algorithm to minimize quadratic functions whose Hessian matrix HHH is the expectation of a random symmetric d×dd\times dd×d matrix. The algorithm is a variant of the stochastic variance reduced gradient (SVRG). In several applications, including least-squares regressions, ridge regressions, linear discriminant analysis and regularized linear discriminant analysis, the running time of each iteration is proportional to ddd. Under smoothness and convexity conditions, the algorithm has linear convergence. When applied to quadratic functions, our analysis improves the state-of-the-art performance of SVRG up to a logarithmic factor. Furthermore, for well-conditioned quadratic problems, our analysis improves the state-of-the-art running times of accelerated SVRG, and is better than the known matching lower bound, by a logarithmic factor. Our theoretical results are backed with numerical experiments.

View on arXiv
Comments on this paper