ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.3115
40
9

On Data Preconditioning for Regularized Loss Minimization

13 August 2014
Tianbao Yang
R. L. Jin
Shenghuo Zhu
Qihang Lin
ArXivPDFHTML
Abstract

In this work, we study data preconditioning, a well-known and long-existing technique, for boosting the convergence of first-order methods for regularized loss minimization. It is well understood that the condition number of the problem, i.e., the ratio of the Lipschitz constant to the strong convexity modulus, has a harsh effect on the convergence of the first-order optimization methods. Therefore, minimizing a small regularized loss for achieving good generalization performance, yielding an ill conditioned problem, becomes the bottleneck for big data problems. We provide a theory on data preconditioning for regularized loss minimization. In particular, our analysis exhibits an appropriate data preconditioner and characterizes the conditions on the loss function and on the data under which data preconditioning can reduce the condition number and therefore boost the convergence for minimizing the regularized loss. To make the data preconditioning practically useful, we endeavor to employ and analyze a random sampling approach to efficiently compute the preconditioned data. The preliminary experiments validate our theory.

View on arXiv
Comments on this paper