ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.2045
19
164

Global Convergence of Online Limited Memory BFGS

6 September 2014
Aryan Mokhtari
Alejandro Ribeiro
ArXivPDFHTML
Abstract

Global convergence of an online (stochastic) limited memory version of the Broyden-Fletcher- Goldfarb-Shanno (BFGS) quasi-Newton method for solving optimization problems with stochastic objectives that arise in large scale machine learning is established. Lower and upper bounds on the Hessian eigenvalues of the sample functions are shown to suffice to guarantee that the curvature approximation matrices have bounded determinants and traces, which, in turn, permits establishing convergence to optimal arguments with probability 1. Numerical experiments on support vector machines with synthetic data showcase reductions in convergence time relative to stochastic gradient descent algorithms as well as reductions in storage and computation relative to other online quasi-Newton methods. Experimental evaluation on a search engine advertising problem corroborates that these advantages also manifest in practical applications.

View on arXiv
Comments on this paper