Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1302.6815
Cited By
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
27 February 2013
David Heckerman
D. Geiger
D. M. Chickering
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Bayesian Networks: The Combination of Knowledge and Statistical Data"
50 / 366 papers shown
Title
On the Role of Priors in Bayesian Causal Learning
Bernhard C. Geiger
Roman Kern
CML
32
0
0
02 Apr 2025
Stable Structure Learning with HC-Stable and Tabu-Stable Algorithms
N. K. Kitson
Anthony C. Constantinou
39
0
0
02 Apr 2025
Heterogeneous Causal Discovery of Repeated Undesirable Health Outcomes
Shishir Adhikari
Guido Muscioni
Mark Shapiro
Plamen Petrov
Elena Zheleva
CML
60
0
0
14 Mar 2025
SNAP: Sequential Non-Ancestor Pruning for Targeted Causal Effect Estimation With an Unknown Graph
Mátyás Schubert
Tom Claassen
Sara Magliacane
CML
71
0
0
11 Feb 2025
Enhancing Bayesian Network Structural Learning with Monte Carlo Tree Search
Jorge D. Laborda
Pablo Torrijos
J. M. Puerta
J. A. Gamez
42
0
0
03 Feb 2025
FedGES: A Federated Learning Approach for BN Structure Learning
Pablo Torrijos
J. A. Gamez
J. M. Puerta
FedML
69
1
0
03 Feb 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
39
0
0
28 Jan 2025
Integrating Probabilistic Trees and Causal Networks for Clinical and Epidemiological Data
Sheresh Zahoor
Pietro Liò
G. Dias
Mohammed Hasanuzzaman
39
0
0
28 Jan 2025
Regularized Multi-LLMs Collaboration for Enhanced Score-based Causal Discovery
Xiaoxuan Li
Yao Liu
Ruoyu Wang
Lina Yao
65
0
0
27 Nov 2024
ψ
ψ
ψ
DAG: Projected Stochastic Approximation Iteration for DAG Structure Learning
Klea Ziu
Slavomír Hanzely
Loka Li
Kun Zhang
Martin Takáč
Dmitry Kamzolov
38
1
0
31 Oct 2024
Markov Equivalence and Consistency in Differentiable Structure Learning
Chang Deng
Kevin Bello
Pradeep Ravikumar
Bryon Aragam
CML
24
0
0
08 Oct 2024
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Yingyu Lin
Yuxing Huang
Wenqin Liu
Haoran Deng
Ignavier Ng
Kun Zhang
Mingming Gong
Yi-An Ma
Biwei Huang
25
1
0
08 Oct 2024
Choosing DAG Models Using Markov and Minimal Edge Count in the Absence of Ground Truth
Joseph Ramsey
Bryan Andrews
Peter Spirtes
CML
24
2
0
30 Sep 2024
bnRep: A repository of Bayesian networks from the academic literature
Manuele Leonelli
14
2
0
27 Sep 2024
CURATE: Scaling-up Differentially Private Causal Graph Discovery
Payel Bhattacharjee
Ravi Tandon
16
0
0
27 Sep 2024
A Ring-Based Distributed Algorithm for Learning High-Dimensional Bayesian Networks
Jorge D. Laborda
Pablo Torrijos
J. M. Puerta
J. A. Gamez
14
2
0
20 Sep 2024
Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures
T. Silander
Janne Leppä-aho
Elias Jääsaari
Teemu Roos
34
27
0
27 Aug 2024
A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders
Christophe Gonzales
Amir-Hosein Valizadeh
BDL
CML
29
0
0
20 Aug 2024
Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models
Yurou Liang
Oleksandr Zadorozhnyi
Mathias Drton
CML
31
0
0
20 Aug 2024
Bayesian Network Modeling of Causal Influence within Cognitive Domains and Clinical Dementia Severity Ratings for Western and Indian Cohorts
Wupadrasta Santosh Kumar
Sayali Rajendra Bhutare
Neelam Sinha
T. Issac
CML
18
0
0
16 Aug 2024
From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks?
Tao Feng
Lizhen Qu
Niket Tandon
Zhuang Li
Xiaoxi Kang
Gholamreza Haffari
LRM
27
4
0
29 Jul 2024
An Efficient Procedure for Computing Bayesian Network Structure Learning
Hongming Huang
Joe Suzuki
16
0
0
24 Jul 2024
Scalable Variational Causal Discovery Unconstrained by Acyclicity
Nu Hoang
Bao Duong
Thin Nguyen
CML
39
0
0
06 Jul 2024
Learnability of Parameter-Bounded Bayes Nets
Arnab Bhattacharyya
Davin Choo
Sutanu Gayen
Dimitrios Myrisiotis
23
0
0
01 Jul 2024
Learning Dynamic Bayesian Networks from Data: Foundations, First Principles and Numerical Comparisons
Vyacheslav Kungurtsev
Fadwa Idlahcen
Petr Rysavý
Pavel Rytír
Ales Wodecki
45
1
0
25 Jun 2024
Greedy equivalence search for nonparametric graphical models
Bryon Aragam
CML
22
1
0
25 Jun 2024
Causality-based Transfer of Driving Scenarios to Unseen Intersections
C. Glasmacher
Michael Schuldes
Sleiman El Masri
Lutz Eckstein
27
0
0
02 Apr 2024
Recursive Causal Discovery
Ehsan Mokhtarian
Sepehr Elahi
S. Akbari
Negar Kiyavash
CML
30
0
0
14 Mar 2024
Towards Automated Causal Discovery: a case study on 5G telecommunication data
Konstantina Biza
Antonios Ntroumpogiannis
Sofia Triantafillou
Ioannis Tsamardinos
28
0
0
22 Feb 2024
Causal Discovery under Off-Target Interventions
Davin Choo
Kirankumar Shiragur
Caroline Uhler
CML
20
1
1
13 Feb 2024
Graph Neural Machine: A New Model for Learning with Tabular Data
Giannis Nikolentzos
Siyun Wang
J. Lutzeyer
Michalis Vazirgiannis
24
0
0
05 Feb 2024
Building Expressive and Tractable Probabilistic Generative Models: A Review
Sahil Sidheekh
S. Natarajan
TPM
11
5
0
01 Feb 2024
Personalized Decision Supports based on Theory of Mind Modeling and Explainable Reinforcement Learning
Huao Li
Yao Fan
Keyang Zheng
Michael Lewis
Katia P. Sycara
20
0
0
13 Dec 2023
Bayesian causal discovery from unknown general interventions
Alessandro Mascaro
F. Castelletti
8
1
0
01 Dec 2023
Entropy and the Kullback-Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation
Marco Scutari
6
2
0
29 Nov 2023
Applying Large Language Models for Causal Structure Learning in Non Small Cell Lung Cancer
Narmada Naik
Ayush Khandelwal
Mohit Joshi
Madhusudan Atre
Hollis Wright
...
Giridhar Mamidipudi
Ganapati Srinivasa
Carlo Bifulco
B. Piening
Kevin Matlock
112
11
0
13 Nov 2023
Extracting the Multiscale Causal Backbone of Brain Dynamics
Gabriele DÁcunto
Francesco Bonchi
G. D. F. Morales
Giovanni Petri
11
0
0
31 Oct 2023
Causal discovery using dynamically requested knowledge
N. K. Kitson
Anthony C. Constantinou
CML
4
0
0
17 Oct 2023
Fast & Efficient Learning of Bayesian Networks from Data: Knowledge Discovery and Causality
Sein Minn
Shunkai Fu
CML
BDL
13
0
0
13 Oct 2023
Benchmarking and Explaining Large Language Model-based Code Generation: A Causality-Centric Approach
Zhenlan Ji
Pingchuan Ma
Zongjie Li
Shuai Wang
24
21
0
10 Oct 2023
Causal structure learning with momentum: Sampling distributions over Markov Equivalence Classes of DAGs
Moritz Schauer
Marcel Wienöbst
CML
17
2
0
09 Oct 2023
Evolutionary Retrosynthetic Route Planning
Yan Zhang
Hao Hao
Xiao He
Shuanhu Gao
Aimin Zhou
11
1
0
08 Oct 2023
Shadow Datasets, New challenging datasets for Causal Representation Learning
Jiageng Zhu
Hanchen Xie
Jianhua Wu
Jiazhi Li
Mahyar Khayatkhoei
Mohamed E. Hussein
Wael AbdAlmageed
14
2
0
10 Aug 2023
Exploring Effective Priors and Efficient Models for Weakly-Supervised Change Detection
Zhenghui Zhao
Lixiang Ru
Chen Wu
18
6
0
20 Jul 2023
Global Optimality in Bivariate Gradient-based DAG Learning
Chang Deng
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
31
8
0
30 Jun 2023
Joint structure learning and causal effect estimation for categorical graphical models
F. Castelletti
G. Consonni
Marco L. Della Vedova
CML
19
2
0
28 Jun 2023
Tuning structure learning algorithms with out-of-sample and resampling strategies
Kiattikun Chobtham
Anthony C. Constantinou
CML
10
2
0
24 Jun 2023
Bivariate Causal Discovery using Bayesian Model Selection
Anish Dhir
Samuel Power
Mark van der Wilk
CML
15
3
0
05 Jun 2023
Active causal structure learning with advice
Davin Choo
Themis Gouleakis
Arnab Bhattacharyya
CML
32
3
0
31 May 2023
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
BDL
28
43
0
30 May 2023
1
2
3
4
5
6
7
8
Next