Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1302.6815
Cited By
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
27 February 2013
David Heckerman
D. Geiger
D. M. Chickering
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Bayesian Networks: The Combination of Knowledge and Statistical Data"
50 / 366 papers shown
Title
Exploiting Noise as a Resource for Computation and Learning in Spiking Neural Networks
Gehua (Marcus) Ma
Rui Yan
Huajin Tang
24
21
0
25 May 2023
Logical Entity Representation in Knowledge-Graphs for Differentiable Rule Learning
Chi Han
Qizheng He
Charles Yu
Xinya Du
Hanghang Tong
Heng Ji
18
13
0
22 May 2023
Open problems in causal structure learning: A case study of COVID-19 in the UK
Anthony C. Constantinou
N. K. Kitson
Yang Liu
Kiattikun Chobtham
Arian Hashemzadeh
Praharsh Nanavati
R. Mbuvha
Bruno Petrungaro
CML
21
9
0
05 May 2023
On Learning Time Series Summary DAGs: A Frequency Domain Approach
Aramayis Dallakyan
CML
AI4TS
19
3
0
17 Apr 2023
Sequential Linearithmic Time Optimal Unimodal Fitting When Minimizing Univariate Linear Losses
Kaan Gokcesu
Hakan Gokcesu
11
0
0
04 Apr 2023
Informed Machine Learning, Centrality, CNN, Relevant Document Detection, Repatriation of Indigenous Human Remains
M. A. Bashar
R. Nayak
G. Knapman
Paul Turnbull
C. Fforde
23
1
0
25 Mar 2023
Causal Discovery from Temporal Data: An Overview and New Perspectives
Chang Gong
Di Yao
Chuzhe Zhang
Wenbin Li
Jingping Bi
AI4TS
CML
16
17
0
17 Mar 2023
An Approximate Bayesian Approach to Covariate-dependent Graphical Modeling
Sutanoy Dasgupta
P. Zhao
Jacob Helwig
P. Ghosh
D. Pati
Bani Mallick
15
1
0
15 Mar 2023
BCSSN: Bi-direction Compact Spatial Separable Network for Collision Avoidance in Autonomous Driving
Haichuan Li
Liguo Zhou
Alois C. Knoll
11
0
0
12 Mar 2023
Learning interpretable causal networks from very large datasets, application to 400,000 medical records of breast cancer patients
M. Ribeiro-Dantas
Honghao Li
Vincent Cabeli
Louise Dupuis
Franck Simon
Liza Hettal
A. Hamy
Hervé Isambert
CML
9
8
0
11 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
24
5
0
06 Mar 2023
Neural Graph Revealers
H. Shrivastava
Urszula Chajewska
BDL
31
6
0
27 Feb 2023
Bayesian Networks for Named Entity Prediction in Programming Community Question Answering
Alexey Gorbatovski
Sergey Kovalchuk
9
2
0
26 Feb 2023
Bayesian Structure Scores for Probabilistic Circuits
Yang Yang
G. Gala
Robert Peharz
TPM
11
7
0
23 Feb 2023
Copula-based transferable models for synthetic population generation
Pascal Jutras-Dubé
Mohammad B. Al-Khasawneh
Zhichao Yang
Javier Bas
Fabian Bastin
C. Cirillo
11
3
0
17 Feb 2023
A Survey on Causal Reinforcement Learning
Yan Zeng
Ruichu Cai
Fuchun Sun
Libo Huang
Z. Hao
CML
26
27
0
10 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
21
45
0
01 Feb 2023
Evaluating Temporal Observation-Based Causal Discovery Techniques Applied to Road Driver Behaviour
Rhys Howard
Lars Kunze
CML
21
7
0
31 Jan 2023
Deep Causal Learning for Robotic Intelligence
Y. Li
CML
17
5
0
23 Dec 2022
A Comprehensively Improved Hybrid Algorithm for Learning Bayesian Networks: Multiple Compound Memory Erasing
Baokui Mou
BDL
17
1
0
05 Dec 2022
Directed Acyclic Graph Structure Learning from Dynamic Graphs
Shaohua Fan
Shuyang Zhang
Xiao Wang
Chuan Shi
CML
31
5
0
30 Nov 2022
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
22
1
0
22 Nov 2022
Methods for Recovering Conditional Independence Graphs: A Survey
H. Shrivastava
Urszula Chajewska
CML
22
11
0
13 Nov 2022
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
22
7
0
24 Oct 2022
GFlowCausal: Generative Flow Networks for Causal Discovery
Wenqian Li
Yinchuan Li
Shengyu Zhu
Yunfeng Shao
Jianye Hao
Yan Pang
BDL
CML
11
12
0
15 Oct 2022
Neural Graphical Models
H. Shrivastava
Urszula Chajewska
25
10
0
02 Oct 2022
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
53
78
0
16 Sep 2022
On the Sparse DAG Structure Learning Based on Adaptive Lasso
Danru Xu
Erdun Gao
Wei Huang
Menghan Wang
Andy Song
Mingming Gong
CML
8
4
0
07 Sep 2022
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CML
AI4TS
32
3
0
31 Aug 2022
Domain Knowledge in A*-Based Causal Discovery
Steven Kleinegesse
A. Lawrence
Hana Chockler
CML
16
3
0
17 Aug 2022
Multiscale Causal Structure Learning
Gabriele DÁcunto
P. Lorenzo
Sergio Barbarossa
45
4
0
16 Jul 2022
The Impact of Variable Ordering on Bayesian Network Structure Learning
N. K. Kitson
Anthony C. Constantinou
CML
15
9
0
17 Jun 2022
Using Mixed-Effects Models to Learn Bayesian Networks from Related Data Sets
M. Scutari
Christopher Marquis
Laura Azzimonti
18
4
0
08 Jun 2022
Causality Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
CML
GAN
OOD
12
0
0
03 Jun 2022
Structure Learning for Hybrid Bayesian Networks
Wanchuang Zhu
Ngoc Lan Chi Nguyen
22
1
0
03 Jun 2022
A Log-Linear Time Sequential Optimal Calibration Algorithm for Quantized Isotonic L2 Regression
Kaan Gokcesu
Hakan Gokcesu
14
1
0
01 Jun 2022
Differentiable Invariant Causal Discovery
Yu-Xiang Wang
An Zhang
Xiang Wang
Yancheng Yuan
Xiangnan He
Tat-Seng Chua
OOD
CML
22
1
0
31 May 2022
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
15
60
0
25 May 2022
Digital Twin for Secure Semiconductor Lifecycle Management: Prospects and Applications
Hasan Al Shaikh
Mohammad Bin Monjil
Shi-Xuan Chen
Navid Asadizanjani
Farimah Farahmandi
M. Tehranipoor
Fahim Rahman
6
2
0
22 May 2022
Adversarial random forests for density estimation and generative modeling
David S. Watson
Kristin Blesch
Jan Kapar
Marvin N. Wright
GAN
57
19
0
19 May 2022
Learning Multitask Gaussian Bayesian Networks
Shuai Liu
Yixuan Qiu
Baojuan Li
Huaning Wang
Xiangyu Chang
6
2
0
11 May 2022
Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs with Applications
Marcel Wienöbst
Max Bannach
Maciej Liskiewicz
19
9
0
05 May 2022
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
20
45
0
01 Apr 2022
DAG-WGAN: Causal Structure Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
GAN
OOD
CML
25
6
0
01 Apr 2022
Quantum Approximate Optimization Algorithm for Bayesian network structure learning
Vicente P. Soloviev
C. Bielza
P. Larrañaga
11
11
0
04 Mar 2022
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
32
22
0
04 Mar 2022
Bayesian Structure Learning with Generative Flow Networks
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
BDL
34
143
0
28 Feb 2022
Parallel Sampling for Efficient High-dimensional Bayesian Network Structure Learning
Zhi-gao Guo
Anthony C. Constantinou
TPM
14
0
0
19 Feb 2022
Surf or sleep? Understanding the influence of bedtime patterns on campus
Teng Guo
Linhong Li
Dongyu Zhang
Feng Xia
19
2
0
18 Feb 2022
BCDAG: An R package for Bayesian structure and Causal learning of Gaussian DAGs
F. Castelletti
Alessandro Mascaro
CML
17
3
0
28 Jan 2022
Previous
1
2
3
4
5
6
7
8
Next