Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1302.6815
Cited By
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
27 February 2013
David Heckerman
D. Geiger
D. M. Chickering
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Bayesian Networks: The Combination of Knowledge and Statistical Data"
50 / 366 papers shown
Title
Distributed Learning of Generalized Linear Causal Networks
Qiaoling Ye
Arash A. Amini
Qing Zhou
CML
OOD
AI4CE
25
16
0
23 Jan 2022
Ordinal Causal Discovery
Yang Ni
Bani Mallick
CML
19
2
0
19 Jan 2022
Efficiently Disentangle Causal Representations
Yuanpeng Li
Joel Hestness
Mohamed Elhoseiny
Liang Zhao
Kenneth Ward Church
OOD
CML
11
1
0
06 Jan 2022
Hybrid Bayesian network discovery with latent variables by scoring multiple interventions
Kiattikun Chobtham
Anthony C. Constantinou
N. K. Kitson
BDL
14
3
0
20 Dec 2021
Effective and efficient structure learning with pruning and model averaging strategies
Anthony C. Constantinou
Yang Liu
N. K. Kitson
Kiattikun Chobtham
Zhi-gao Guo
13
17
0
01 Dec 2021
Recursive Bayesian Networks: Generalising and Unifying Probabilistic Context-Free Grammars and Dynamic Bayesian Networks
Robert Lieck
M. Rohrmeier
BDL
17
5
0
02 Nov 2021
Efficient Learning of Quadratic Variance Function Directed Acyclic Graphs via Topological Layers
Wei Zhou
Xin He
Wei Zhong
Junhui Wang
CML
27
4
0
01 Nov 2021
Efficient, Anytime Algorithms for Calibration with Isotonic Regression under Strictly Convex Losses
Kaan Gokcesu
Hakan Gokcesu
12
5
0
31 Oct 2021
CausalAF: Causal Autoregressive Flow for Safety-Critical Driving Scenario Generation
Wenhao Ding
Hao-ming Lin
Bo-wen Li
Ding Zhao
16
28
0
26 Oct 2021
Efficient Bayesian network structure learning via local Markov boundary search
Ming Gao
Bryon Aragam
27
17
0
12 Oct 2021
Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families
Goutham Rajendran
Bohdan Kivva
Ming Gao
Bryon Aragam
21
17
0
10 Oct 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
24
181
0
23 Sep 2021
A Fast PC Algorithm with Reversed-order Pruning and A Parallelization Strategy
Kai Zhang
Chao Tian
Kun Zhang
Todd Johnson
Xiaoqian Jiang
CML
38
4
0
10 Sep 2021
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
28
42
0
06 Sep 2021
Optimally Efficient Sequential Calibration of Binary Classifiers to Minimize Classification Error
Kaan Gokcesu
Hakan Gokcesu
11
18
0
19 Aug 2021
Improving Accuracy of Permutation DAG Search using Best Order Score Search
Joseph Ramsey
11
3
0
17 Aug 2021
Sensitivity and robustness analysis in Bayesian networks with the bnmonitor R package
Manuele Leonelli
R. Ramanathan
R. L. Wilkerson
11
9
0
25 Jul 2021
Greedy structure learning from data that contain systematic missing values
Yang Liu
Anthony C. Constantinou
8
10
0
09 Jul 2021
Benchpress: A Scalable and Versatile Workflow for Benchmarking Structure Learning Algorithms
Felix L. Rios
G. Moffa
Jack Kuipers
CML
27
12
0
08 Jul 2021
Exact Learning Augmented Naive Bayes Classifier
Shouta Sugahara
M. Ueno
BDL
15
30
0
07 Jul 2021
Learning Bayesian Networks through Birkhoff Polytope: A Relaxation Method
Aramayis Dallakyan
Mohsen Pourahmadi
CML
12
2
0
04 Jul 2021
Prequential MDL for Causal Structure Learning with Neural Networks
J. Bornschein
Silvia Chiappa
Alan Malek
Rosemary Nan Ke
CML
29
2
0
02 Jul 2021
Learning Large DAGs by Combining Continuous Optimization and Feedback Arc Set Heuristics
P. Gillot
P. Parviainen
CML
BDL
14
3
0
01 Jul 2021
Improved Acyclicity Reasoning for Bayesian Network Structure Learning with Constraint Programming
Fulya Trösser
S. D. Givry
G. Katsirelos
11
10
0
23 Jun 2021
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
26
87
0
25 May 2021
Data-driven discovery of interpretable causal relations for deep learning material laws with uncertainty propagation
Xiao Sun
B. Bahmani
Nikolaos N. Vlassis
WaiChing Sun
Yanxun Xu
CML
AI4CE
63
26
0
20 May 2021
Likelihoods and Parameter Priors for Bayesian Networks
David Heckerman
D. Geiger
14
5
0
13 May 2021
Bayesian Model Averaging for Data Driven Decision Making when Causality is Partially Known
Marios Papamichalis
Abhishek Ray
Ilias Bilionis
Karthik N. Kannan
Rajiv Krishnamurthy
CML
9
1
0
12 May 2021
Bayesian Structural Learning for an Improved Diagnosis of Cyber-Physical Systems
Nicolas Olivain
Philipp Tiefenbacher
J. Kohl
16
2
0
02 Apr 2021
Active Structure Learning of Bayesian Networks in an Observational Setting
Noa Ben-David
Sivan Sabato
11
4
0
25 Mar 2021
Partitioned hybrid learning of Bayesian network structures
Jireh Huang
Qing Zhou
TPM
17
8
0
22 Mar 2021
Bayesian Model Averaging for Causality Estimation and its Approximation based on Gaussian Scale Mixture Distributions
Shunsuke Horii
CML
11
2
0
15 Mar 2021
Causal Markov Boundaries
Sofia Triantafillou
Fattaneh Jabbari
Gregory F. Cooper
CML
OOD
10
5
0
12 Mar 2021
Deep Transfer Learning for Infectious Disease Case Detection Using Electronic Medical Records
Ye Ye
Andrew Gu
OOD
6
2
0
08 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
26
296
0
03 Mar 2021
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models
Matej Zečević
D. Dhami
Athresh Karanam
S. Natarajan
Kristian Kersting
CML
TPM
11
32
0
20 Feb 2021
Integer Programming for Causal Structure Learning in the Presence of Latent Variables
Rui Chen
S. Dash
Tian Gao
CML
16
14
0
05 Feb 2021
The impact of prior knowledge on causal structure learning
Anthony C. Constantinou
Zhi-gao Guo
N. K. Kitson
CML
24
30
0
31 Jan 2021
How do some Bayesian Network machine learned graphs compare to causal knowledge?
Anthony C. Constantinou
Norman E. Fenton
M. Neil
CML
6
3
0
25 Jan 2021
BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation
Ziniu Wu
Amir Shaikhha
Rong Zhu
Kai Zeng
Yuxing Han
Jingren Zhou
BDL
9
23
0
29 Dec 2020
Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs
Marcel Wienöbst
Max Bannach
Maciej Liskiewicz
TPM
8
17
0
17 Dec 2020
Hard and Soft EM in Bayesian Network Learning from Incomplete Data
Andrea Ruggieri
Francesco Stranieri
Fabio Stella
M. Scutari
14
16
0
09 Dec 2020
Efficient and Scalable Structure Learning for Bayesian Networks: Algorithms and Applications
Rong Zhu
A. Pfadler
Ziniu Wu
Yuxing Han
Xiaoke Yang
Feng Ye
Zhenping Qian
Jingren Zhou
Bin Cui
16
9
0
07 Dec 2020
The FEDHC Bayesian network learning algorithm
M. Tsagris
16
3
0
30 Nov 2020
A Bregman Method for Structure Learning on Sparse Directed Acyclic Graphs
Manon Romain
Alexandre d’Aspremont
9
5
0
05 Nov 2020
A Recursive Markov Boundary-Based Approach to Causal Structure Learning
Ehsan Mokhtarian
S. Akbari
AmirEmad Ghassami
Negar Kiyavash
CML
11
17
0
10 Oct 2020
Physical System for Non Time Sequence Data
Xiong Chen
CML
8
0
0
07 Oct 2020
Learning All Credible Bayesian Network Structures for Model Averaging
Zhenyu A. Liao
Charupriya Sharma
James Cussens
P. V. Beek
BDL
9
0
0
27 Aug 2020
Amortized learning of neural causal representations
Nan Rosemary Ke
Jane X. Wang
Jovana Mitrović
M. Szummer
Danilo Jimenez Rezende
CML
BDL
14
17
0
21 Aug 2020
A Bayesian Hierarchical Score for Structure Learning from Related Data Sets
Laura Azzimonti
Giorgio Corani
M. Scutari
19
6
0
04 Aug 2020
Previous
1
2
3
4
5
6
7
8
Next