ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.11181
24
0

A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders

20 August 2024
Christophe Gonzales
Amir-Hosein Valizadeh
    BDL
    CML
ArXivPDFHTML
Abstract

Causal Bayesian networks (CBN) are popular graphical probabilistic models that encode causal relations among variables. Learning their graphical structure from observational data has received a lot of attention in the literature. When there exists no latent (unobserved) confounder, i.e., no unobserved direct common cause of some observed variables, learning algorithms can be divided essentially into two classes: constraint-based and score-based approaches. The latter are often thought to be more robust than the former and to produce better results. However, to the best of our knowledge, when variables are discrete, no score-based algorithm is capable of dealing with latent confounders. This paper introduces the first fully score-based structure learning algorithm searching the space of DAGs (directed acyclic graphs) that is capable of identifying the presence of some latent confounders. It is justified mathematically and experiments highlight its effectiveness.

View on arXiv
Comments on this paper