ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1012.2599
  4. Cited By
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
  Application to Active User Modeling and Hierarchical Reinforcement Learning

A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

12 December 2010
E. Brochu
Vlad M. Cora
Nando de Freitas
    GP
ArXivPDFHTML

Papers citing "A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning"

29 / 279 papers shown
Title
Predictive Entropy Search for Bayesian Optimization with Unknown
  Constraints
Predictive Entropy Search for Bayesian Optimization with Unknown Constraints
José Miguel Hernández-Lobato
M. Gelbart
Matthew W. Hoffman
Ryan P. Adams
Zoubin Ghahramani
31
152
0
18 Feb 2015
Gaussian Processes for Data-Efficient Learning in Robotics and Control
Gaussian Processes for Data-Efficient Learning in Robotics and Control
M. Deisenroth
Dieter Fox
C. Rasmussen
32
683
0
10 Feb 2015
Distributed Gaussian Processes
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
31
340
0
10 Feb 2015
Hyper-parameter optimization of Deep Convolutional Networks for object
  recognition
Hyper-parameter optimization of Deep Convolutional Networks for object recognition
S. Talathi
37
25
0
30 Jan 2015
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process
  Regression
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
Jun Wei Ng
M. Deisenroth
39
51
0
09 Dec 2014
Automated Machine Learning on Big Data using Stochastic Algorithm Tuning
Automated Machine Learning on Big Data using Stochastic Algorithm Tuning
T. Nickson
Michael A. Osborne
S. Reece
Stephen J. Roberts
29
25
0
30 Jul 2014
Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian
  Process Hyper-Parameters
Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters
Ziyun Wang
Nando de Freitas
49
89
0
30 Jun 2014
Freeze-Thaw Bayesian Optimization
Freeze-Thaw Bayesian Optimization
Kevin Swersky
Jasper Snoek
Ryan P. Adams
59
267
0
16 Jun 2014
Bayesian Optimization with Unknown Constraints
Bayesian Optimization with Unknown Constraints
M. Gelbart
Jasper Snoek
Ryan P. Adams
41
442
0
22 Mar 2014
Bayesian Multi-Scale Optimistic Optimization
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
80
95
0
27 Feb 2014
Student-t Processes as Alternatives to Gaussian Processes
Student-t Processes as Alternatives to Gaussian Processes
Amar Shah
A. Wilson
Zoubin Ghahramani
GP
47
202
0
18 Feb 2014
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
Edward Meeds
Max Welling
57
123
0
13 Jan 2014
Particle filter-based Gaussian process optimisation for parameter
  inference
Particle filter-based Gaussian process optimisation for parameter inference
J. Dahlin
Fredrik Lindsten
GP
28
20
0
04 Nov 2013
Active Learning of Linear Embeddings for Gaussian Processes
Active Learning of Linear Embeddings for Gaussian Processes
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
54
91
0
24 Oct 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
57
436
0
09 Jan 2013
Auto-WEKA: Combined Selection and Hyperparameter Optimization of
  Classification Algorithms
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms
C. Thornton
Frank Hutter
Holger H. Hoos
Kevin Leyton-Brown
35
76
0
18 Aug 2012
Exponential Regret Bounds for Gaussian Process Bandits with
  Deterministic Observations
Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations
Nando de Freitas
Alex Smola
M. Zoghi
39
110
0
27 Jun 2012
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process
  Bandit Optimization
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization
Thomas Desautels
Andreas Krause
J. W. Burdick
54
471
0
27 Jun 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
29
12,345
0
24 Jun 2012
Active Learning for Matching Problems
Active Learning for Matching Problems
Laurent Charlin
R. Zemel
Craig Boutilier
41
10
0
18 Jun 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
140
7,858
0
13 Jun 2012
Decentralized, Adaptive, Look-Ahead Particle Filtering
Decentralized, Adaptive, Look-Ahead Particle Filtering
Mohamed Osama Ahmed
Pouyan T. Bibalan
Nando de Freitas
Simon Fauvel
36
3
0
12 Mar 2012
Regret Bounds for Deterministic Gaussian Process Bandits
Regret Bounds for Deterministic Gaussian Process Bandits
Nando de Freitas
Alex Smola
M. Zoghi
GP
225
10
0
09 Mar 2012
Hybrid Batch Bayesian Optimization
Hybrid Batch Bayesian Optimization
J. Azimi
A. Jalali
Xiaoli Z. Fern
24
70
0
25 Feb 2012
Self-Avoiding Random Dynamics on Integer Complex Systems
Self-Avoiding Random Dynamics on Integer Complex Systems
F. Hamze
Ziyun Wang
Nando de Freitas
45
25
0
23 Nov 2011
Dynamic Batch Bayesian Optimization
Dynamic Batch Bayesian Optimization
J. Azimi
A. Jalali
Xiaoli Z. Fern
35
7
0
14 Oct 2011
Portfolio Allocation for Bayesian Optimization
Portfolio Allocation for Bayesian Optimization
E. Brochu
Matthew W. Hoffman
Nando de Freitas
51
278
0
28 Sep 2010
Adaptive Submodularity: Theory and Applications in Active Learning and
  Stochastic Optimization
Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization
Daniel Golovin
Andreas Krause
64
600
0
21 Mar 2010
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
54
1,613
0
21 Dec 2009
Previous
123456