ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1012.2599
  4. Cited By
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
  Application to Active User Modeling and Hierarchical Reinforcement Learning

A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

12 December 2010
E. Brochu
Vlad M. Cora
Nando de Freitas
    GP
ArXiv (abs)PDFHTML

Papers citing "A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning"

41 / 691 papers shown
Title
Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian
  Process Hyper-Parameters
Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters
Ziyun Wang
Nando de Freitas
120
89
0
30 Jun 2014
An Entropy Search Portfolio for Bayesian Optimization
An Entropy Search Portfolio for Bayesian Optimization
Bobak Shahriari
Ziyun Wang
Matthew W. Hoffman
Alexandre Bouchard-Côté
Nando de Freitas
142
57
0
18 Jun 2014
Freeze-Thaw Bayesian Optimization
Freeze-Thaw Bayesian Optimization
Kevin Swersky
Jasper Snoek
Ryan P. Adams
119
270
0
16 Jun 2014
Predictive Entropy Search for Efficient Global Optimization of Black-box
  Functions
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
111
648
0
10 Jun 2014
BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization,
  Experimental Design and Bandits
BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits
Ruben Martinez-Cantin
118
287
0
29 May 2014
Bayesian Optimization with Unknown Constraints
Bayesian Optimization with Unknown Constraints
M. Gelbart
Jasper Snoek
Ryan P. Adams
105
450
0
22 Mar 2014
Learning to Optimize via Information-Directed Sampling
Learning to Optimize via Information-Directed Sampling
Daniel Russo
Benjamin Van Roy
203
285
0
21 Mar 2014
Modeling an Augmented Lagrangian for Blackbox Constrained Optimization
Modeling an Augmented Lagrangian for Blackbox Constrained Optimization
R. Gramacy
G. A. Gray
Sébastien Le Digabel
Herbert K. H. Lee
P. Ranjan
Garth Weels
Stefan M. Wild
78
11
0
19 Mar 2014
Active Learning for Autonomous Intelligent Agents: Exploration,
  Curiosity, and Interaction
Active Learning for Autonomous Intelligent Agents: Exploration, Curiosity, and Interaction
M. Lopes
Luis Montesano
130
14
0
06 Mar 2014
Bayesian Multi-Scale Optimistic Optimization
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
132
95
0
27 Feb 2014
Student-t Processes as Alternatives to Gaussian Processes
Student-t Processes as Alternatives to Gaussian Processes
Amar Shah
A. Wilson
Zoubin Ghahramani
GP
123
203
0
18 Feb 2014
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
Edward Meeds
Max Welling
213
124
0
13 Jan 2014
No Free Lunch Theorem and Bayesian probability theory: two sides of the
  same coin. Some implications for black-box optimization and metaheuristics
No Free Lunch Theorem and Bayesian probability theory: two sides of the same coin. Some implications for black-box optimization and metaheuristics
L. Serafino
64
8
0
23 Nov 2013
Particle filter-based Gaussian process optimisation for parameter
  inference
Particle filter-based Gaussian process optimisation for parameter inference
J. Dahlin
Fredrik Lindsten
GP
85
20
0
04 Nov 2013
Active Learning of Linear Embeddings for Gaussian Processes
Active Learning of Linear Embeddings for Gaussian Processes
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
124
92
0
24 Oct 2013
BayesOpt: A Library for Bayesian optimization with Robotics Applications
BayesOpt: A Library for Bayesian optimization with Robotics Applications
Ruben Martinez-Cantin
71
0
0
03 Sep 2013
Exploiting correlation and budget constraints in Bayesian multi-armed
  bandit optimization
Exploiting correlation and budget constraints in Bayesian multi-armed bandit optimization
Matthew W. Hoffman
Bobak Shahriari
Nando de Freitas
122
15
0
27 Mar 2013
Adaptive Hamiltonian and Riemann Manifold Monte Carlo Samplers
Adaptive Hamiltonian and Riemann Manifold Monte Carlo Samplers
Ziyun Wang
S. Mohamed
Nando de Freitas
184
56
0
25 Feb 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
219
447
0
09 Jan 2013
Optimized Look-Ahead Tree Policies: A Bridge Between Look-Ahead Tree
  Policies and Direct Policy Search
Optimized Look-Ahead Tree Policies: A Bridge Between Look-Ahead Tree Policies and Direct Policy Search
T. Jung
L. Wehenkel
D. Ernst
Francis Maes
57
5
0
23 Aug 2012
Auto-WEKA: Combined Selection and Hyperparameter Optimization of
  Classification Algorithms
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms
C. Thornton
Frank Hutter
Holger H. Hoos
Kevin Leyton-Brown
96
76
0
18 Aug 2012
Joint Optimization and Variable Selection of High-dimensional Gaussian
  Processes
Joint Optimization and Variable Selection of High-dimensional Gaussian Processes
Bo Chen
R. Castro
Andreas Krause
GP
121
87
0
27 Jun 2012
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process
  Bandit Optimization
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization
Thomas Desautels
Andreas Krause
J. W. Burdick
116
472
0
27 Jun 2012
Exponential Regret Bounds for Gaussian Process Bandits with
  Deterministic Observations
Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations
Nando de Freitas
Alex Smola
M. Zoghi
107
112
0
27 Jun 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
336
12,494
0
24 Jun 2012
Active Learning for Matching Problems
Active Learning for Matching Problems
Laurent Charlin
R. Zemel
Craig Boutilier
74
10
0
18 Jun 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
397
8,008
0
13 Jun 2012
A Nonparametric Conjugate Prior Distribution for the Maximizing Argument
  of a Noisy Function
A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function
Pedro A. Ortega
Jordi Grau-Moya
Tim Genewein
David Balduzzi
Daniel A. Braun
113
2
0
09 Jun 2012
A Lipschitz Exploration-Exploitation Scheme for Bayesian Optimization
A Lipschitz Exploration-Exploitation Scheme for Bayesian Optimization
A. Jalali
J. Azimi
Xiaoli Z. Fern
Ruofei Zhang
128
9
0
30 Mar 2012
Decentralized, Adaptive, Look-Ahead Particle Filtering
Decentralized, Adaptive, Look-Ahead Particle Filtering
Mohamed Osama Ahmed
Pouyan T. Bibalan
Nando de Freitas
Simon Fauvel
85
3
0
12 Mar 2012
Regret Bounds for Deterministic Gaussian Process Bandits
Regret Bounds for Deterministic Gaussian Process Bandits
Nando de Freitas
Alex Smola
M. Zoghi
GP
493
11
0
09 Mar 2012
Hybrid Batch Bayesian Optimization
Hybrid Batch Bayesian Optimization
J. Azimi
A. Jalali
Xiaoli Z. Fern
95
70
0
25 Feb 2012
Self-Avoiding Random Dynamics on Integer Complex Systems
Self-Avoiding Random Dynamics on Integer Complex Systems
F. Hamze
Ziyun Wang
Nando de Freitas
122
25
0
23 Nov 2011
Bayesian Optimization for Adaptive MCMC
Bayesian Optimization for Adaptive MCMC
Nimalan Mahendran
Ziyun Wang
F. Hamze
Nando de Freitas
89
3
0
29 Oct 2011
Dynamic Batch Bayesian Optimization
Dynamic Batch Bayesian Optimization
J. Azimi
A. Jalali
Xiaoli Z. Fern
90
7
0
14 Oct 2011
Learning where to Attend with Deep Architectures for Image Tracking
Learning where to Attend with Deep Architectures for Image Tracking
Misha Denil
Loris Bazzani
Hugo Larochelle
Nando de Freitas
134
207
0
16 Sep 2011
Convergence rates of efficient global optimization algorithms
Convergence rates of efficient global optimization algorithms
Adam D. Bull
188
644
0
18 Jan 2011
Portfolio Allocation for Bayesian Optimization
Portfolio Allocation for Bayesian Optimization
E. Brochu
Matthew W. Hoffman
Nando de Freitas
464
281
0
28 Sep 2010
Gaussian Process Bandits for Tree Search: Theory and Application to
  Planning in Discounted MDPs
Gaussian Process Bandits for Tree Search: Theory and Application to Planning in Discounted MDPs
Louis Dorard
John Shawe-Taylor
GP
112
1
0
03 Sep 2010
Adaptive Submodularity: Theory and Applications in Active Learning and
  Stochastic Optimization
Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization
Daniel Golovin
Andreas Krause
187
605
0
21 Mar 2010
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
201
1,627
0
21 Dec 2009
Previous
123...121314