ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1012.2599
  4. Cited By
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
  Application to Active User Modeling and Hierarchical Reinforcement Learning

A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

12 December 2010
E. Brochu
Vlad M. Cora
Nando de Freitas
    GP
ArXivPDFHTML

Papers citing "A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning"

50 / 279 papers shown
Title
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
54
65
0
09 Oct 2022
Joint Entropy Search for Multi-objective Bayesian Optimization
Joint Entropy Search for Multi-objective Bayesian Optimization
Ben Tu
Axel Gandy
N. Kantas
B. Shafei
40
38
0
06 Oct 2022
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Willie Neiswanger
Lantao Yu
Shengjia Zhao
Chenlin Meng
Stefano Ermon
UQCV
50
11
0
04 Oct 2022
BayesFT: Bayesian Optimization for Fault Tolerant Neural Network
  Architecture
BayesFT: Bayesian Optimization for Fault Tolerant Neural Network Architecture
Nanyang Ye
Jingbiao Mei
Zhicheng Fang
Yuwen Zhang
Ziqing Zhang
Huaying Wu
Xiaoyao Liang
OOD
33
5
0
30 Sep 2022
Backflipping with Miniature Quadcopters by Gaussian Process Based
  Control and Planning
Backflipping with Miniature Quadcopters by Gaussian Process Based Control and Planning
Péter Antal
Tamás Péni
R. Tóth
45
8
0
29 Sep 2022
Multipoint-BAX: A New Approach for Efficiently Tuning Particle
  Accelerator Emittance via Virtual Objectives
Multipoint-BAX: A New Approach for Efficiently Tuning Particle Accelerator Emittance via Virtual Objectives
Sara Ayoub Miskovich
Willie Neiswanger
W. Colocho
C. Emma
Jacqueline Garrahan
T. Maxwell
C. Mayes
Stefano Ermon
A. Edelen
Daniel Ratner
34
3
0
10 Sep 2022
Optimizing Demonstrated Robot Manipulation Skills for Temporal Logic
  Constraints
Optimizing Demonstrated Robot Manipulation Skills for Temporal Logic Constraints
Akshay Dhonthi
Philipp Schillinger
Leonel Rozo
Daniele Nardi
41
7
0
07 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
87
24
0
01 Sep 2022
Black-box optimization for integer-variable problems using Ising
  machines and factorization machines
Black-box optimization for integer-variable problems using Ising machines and factorization machines
Yuya Seki
R. Tamura
Shu Tanaka
22
8
0
01 Sep 2022
Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
  Zooming Memory-Based Initialization (ZoMBI)
Fast Bayesian Optimization of Needle-in-a-Haystack Problems using Zooming Memory-Based Initialization (ZoMBI)
Alexander E. Siemenn
Zekun Ren
Qianxiao Li
Tonio Buonassisi
51
23
0
26 Aug 2022
A Survey of Open Source Automation Tools for Data Science Predictions
A Survey of Open Source Automation Tools for Data Science Predictions
Nicholas Hoell
32
0
0
24 Aug 2022
Bayesian Optimization Augmented with Actively Elicited Expert Knowledge
Bayesian Optimization Augmented with Actively Elicited Expert Knowledge
Daolang Huang
Louis Filstroff
P. Mikkola
Runkai Zheng
Samuel Kaski
31
5
0
18 Aug 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting
  Algorithms for Partly Smooth Functions
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
42
3
0
05 Aug 2022
Bayesian Optimization-Based Beam Alignment for MmWave MIMO Communication
  Systems
Bayesian Optimization-Based Beam Alignment for MmWave MIMO Communication Systems
Songjie Yang
Baojuan Liu
Zhiqin Hong
Zhong-pei Zhang
17
8
0
28 Jul 2022
Optimization of the Shape of a Hydrokinetic Turbine's Draft Tube and Hub
  Assembly Using Design-by-Morphing with Bayesian Optimization
Optimization of the Shape of a Hydrokinetic Turbine's Draft Tube and Hub Assembly Using Design-by-Morphing with Bayesian Optimization
Haris Moazam Sheikh
Tess A. Callan
Kealan J. Hennessy
P. Marcus
AI4CE
25
11
0
23 Jul 2022
Inference of Regulatory Networks Through Temporally Sparse Data
Inference of Regulatory Networks Through Temporally Sparse Data
Mohammad Alali
Mahdi Imani
29
17
0
21 Jul 2022
Bayesian Generational Population-Based Training
Bayesian Generational Population-Based Training
Xingchen Wan
Cong Lu
Jack Parker-Holder
Philip J. Ball
Vu-Linh Nguyen
Binxin Ru
Michael A. Osborne
OffRL
36
15
0
19 Jul 2022
Bayesian Optimization-based Nonlinear Adaptive PID Controller Design for
  Robust Mobile Manipulation
Bayesian Optimization-based Nonlinear Adaptive PID Controller Design for Robust Mobile Manipulation
Hadi Hajieghrary
M. Deisenroth
Yasemin Bekiroglu
11
2
0
04 Jul 2022
Optimizing Training Trajectories in Variational Autoencoders via Latent
  Bayesian Optimization Approach
Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach
Arpan Biswas
Rama K Vasudevan
M. Ziatdinov
Sergei V. Kalinin
BDL
DRL
27
10
0
30 Jun 2022
Quantum Neural Architecture Search with Quantum Circuits Metric and
  Bayesian Optimization
Quantum Neural Architecture Search with Quantum Circuits Metric and Bayesian Optimization
Trong Duong
Sang T. Truong
Minh Tam
B. Bach
Juno Ryu
J. Rhee
27
15
0
28 Jun 2022
Demystifying the Adversarial Robustness of Random Transformation
  Defenses
Demystifying the Adversarial Robustness of Random Transformation Defenses
Chawin Sitawarin
Zachary Golan-Strieb
David Wagner
AAML
25
20
0
18 Jun 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
45
200
0
07 Jun 2022
Efficient Minimax Optimal Global Optimization of Lipschitz Continuous
  Multivariate Functions
Efficient Minimax Optimal Global Optimization of Lipschitz Continuous Multivariate Functions
Kaan Gokcesu
Hakan Gokcesu
23
2
0
06 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
35
2
0
27 May 2022
Learning to Assemble Geometric Shapes
Learning to Assemble Geometric Shapes
Jinhwi Lee
Jungtaek Kim
H. Chung
Jaesik Park
Minsu Cho
23
4
0
24 May 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in
  Noisy Bayesian Optimization
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
33
4
0
10 May 2022
Designing Robust Biotechnological Processes Regarding Variabilities
  using Multi-Objective Optimization Applied to a Biopharmaceutical Seed Train
  Design
Designing Robust Biotechnological Processes Regarding Variabilities using Multi-Objective Optimization Applied to a Biopharmaceutical Seed Train Design
T. H. Rodríguez
Anton Sekulic
Markus Lange-Hegermann
Björn Frahm
26
9
0
06 May 2022
Visualization and Optimization Techniques for High Dimensional Parameter
  Spaces
Visualization and Optimization Techniques for High Dimensional Parameter Spaces
Anjul Tyagi
14
3
0
28 Apr 2022
FuncPipe: A Pipelined Serverless Framework for Fast and Cost-efficient
  Training of Deep Learning Models
FuncPipe: A Pipelined Serverless Framework for Fast and Cost-efficient Training of Deep Learning Models
Yunzhuo Liu
Bo Jiang
Tian Guo
Zimeng Huang
Wen-ping Ma
Xinbing Wang
Chenghu Zhou
34
9
0
28 Apr 2022
Predicting and Optimizing for Energy Efficient ACMV Systems:
  Computational Intelligence Approaches
Predicting and Optimizing for Energy Efficient ACMV Systems: Computational Intelligence Approaches
Deqing Zhai
Y. Soh
44
0
0
19 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
37
84
0
13 Apr 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
43
90
0
23 Mar 2022
Skill-based Multi-objective Reinforcement Learning of Industrial Robot
  Tasks with Planning and Knowledge Integration
Skill-based Multi-objective Reinforcement Learning of Industrial Robot Tasks with Planning and Knowledge Integration
Matthias Mayr
Faseeh Ahmad
Konstantinos Chatzilygeroudis
Luigi Nardi
Volker Krueger
35
28
0
18 Mar 2022
Rectified Max-Value Entropy Search for Bayesian Optimization
Rectified Max-Value Entropy Search for Bayesian Optimization
Q. Nguyen
K. H. Low
Patrick Jaillet
31
5
0
28 Feb 2022
SafeAPT: Safe Simulation-to-Real Robot Learning using Diverse Policies
  Learned in Simulation
SafeAPT: Safe Simulation-to-Real Robot Learning using Diverse Policies Learned in Simulation
Rituraj Kaushik
Karol Arndt
Ville Kyrki
29
8
0
27 Jan 2022
Automated Heart and Lung Auscultation in Robotic Physical Examinations
Automated Heart and Lung Auscultation in Robotic Physical Examinations
Yifan Zhu
A. Smith
Kris K. Hauser
28
11
0
24 Jan 2022
A Comparative study of Hyper-Parameter Optimization Tools
A Comparative study of Hyper-Parameter Optimization Tools
Shashank Shekhar
Adesh Bansode
Asif Salim
22
48
0
17 Jan 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
24
12
0
17 Jan 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
38
100
0
11 Jan 2022
Online Calibrated and Conformal Prediction Improves Bayesian
  Optimization
Online Calibrated and Conformal Prediction Improves Bayesian Optimization
Shachi Deshpande
Charles Marx
Volodymyr Kuleshov
13
7
0
08 Dec 2021
Bayesian Optimization for auto-tuning GPU kernels
Bayesian Optimization for auto-tuning GPU kernels
Floris-Jan Willemsen
Rob van Nieuwpoort
Ben van Werkhoven
33
20
0
26 Nov 2021
Asteroid Flyby Cycler Trajectory Design Using Deep Neural Networks
Asteroid Flyby Cycler Trajectory Design Using Deep Neural Networks
N. Ozaki
Kanta Yanagida
Takuya Chikazawa
N. Pushparaj
Naoya Takeishi
R. Hyodo
13
6
0
23 Nov 2021
Quality and Computation Time in Optimization Problems
Quality and Computation Time in Optimization Problems
Zhicheng He
34
0
0
20 Nov 2021
Multi-Objective Constrained Optimization for Energy Applications via
  Tree Ensembles
Multi-Objective Constrained Optimization for Energy Applications via Tree Ensembles
Alexander Thebelt
Calvin Tsay
Robert M. Lee
Nathan Sudermann-Merx
David Walz
T. Tranter
Ruth Misener
AI4CE
19
30
0
04 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
30
1
0
02 Nov 2021
Brick-by-Brick: Combinatorial Construction with Deep Reinforcement
  Learning
Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning
H. Chung
Jungtaek Kim
Boris Knyazev
Jinhwi Lee
Graham W. Taylor
Jaesik Park
Minsu Cho
SSL
OffRL
23
20
0
29 Oct 2021
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
  Independent Projected Kernels
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels
M. Hutchinson
Alexander Terenin
Viacheslav Borovitskiy
So Takao
Yee Whye Teh
M. Deisenroth
35
20
0
27 Oct 2021
Scaling Bayesian Optimization With Game Theory
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
29
1
0
07 Oct 2021
Study of Signal Temporal Logic Robustness Metrics for Robotic Tasks
  Optimization
Study of Signal Temporal Logic Robustness Metrics for Robotic Tasks Optimization
Akshay Dhonthi
Philipp Schillinger
Leonel Rozo
Daniele Nardi
38
4
0
01 Oct 2021
Non-smooth Bayesian Optimization in Tuning Problems
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
Previous
123456
Next