50
22

Top-kk Ranking Bayesian Optimization

Abstract

This paper presents a novel approach to top-kk ranking Bayesian optimization (top-kk ranking BO) which is a practical and significant generalization of preferential BO to handle top-kk ranking and tie/indifference observations. We first design a surrogate model that is not only capable of catering to the above observations, but is also supported by a classic random utility model. Another equally important contribution is the introduction of the first information-theoretic acquisition function in BO with preferential observation called multinomial predictive entropy search (MPES) which is flexible in handling these observations and optimized for all inputs of a query jointly. MPES possesses superior performance compared with existing acquisition functions that select the inputs of a query one at a time greedily. We empirically evaluate the performance of MPES using several synthetic benchmark functions, CIFAR-1010 dataset, and SUSHI preference dataset.

View on arXiv
Comments on this paper