Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.21813
Cited By
Optimizing Data Augmentation through Bayesian Model Selection
27 May 2025
Madi Matymov
Ba-Hien Tran
Michael Kampffmeyer
Markus Heinonen
Maurizio Filippone
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimizing Data Augmentation through Bayesian Model Selection"
46 / 46 papers shown
Title
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
93
6
0
03 Mar 2025
Robust Classification by Coupling Data Mollification with Label Smoothing
Markus Heinonen
Ba-Hien Tran
Michael Kampffmeyer
Maurizio Filippone
160
1
0
03 Jun 2024
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDL
UQCV
141
33
0
17 Apr 2024
Posterior Uncertainty Quantification in Neural Networks using Data Augmentation
Luhuan Wu
Sinead Williamson
UQCV
86
7
0
18 Mar 2024
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
123
4
0
30 May 2023
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDL
MLT
AI4CE
81
62
0
24 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
68
56
0
11 Nov 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
58
12
0
29 Sep 2022
Revisiting Neural Scaling Laws in Language and Vision
Ibrahim Alabdulmohsin
Behnam Neyshabur
Xiaohua Zhai
224
111
0
13 Sep 2022
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
75
19
0
14 Jul 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
125
9
0
27 May 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
89
51
0
30 Mar 2022
Deep AutoAugment
Yu Zheng
Zikai Zhang
Shen Yan
Mi Zhang
ViT
100
28
0
11 Mar 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
123
48
0
22 Feb 2022
A Theory of PAC Learnability under Transformation Invariances
Hang Shao
Omar Montasser
Avrim Blum
76
21
0
15 Feb 2022
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
173
206
0
21 Oct 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
226
315
0
28 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
77
41
0
10 Jun 2021
A Survey of Data Augmentation Approaches for NLP
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
119
829
0
07 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
79
388
0
29 Apr 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDL
UQCV
142
109
0
11 Apr 2021
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
102
34
0
09 Apr 2021
Martingale posterior distributions
Edwin Fong
Chris Holmes
S. Walker
UQCV
162
51
0
29 Mar 2021
Accounting for Variance in Machine Learning Benchmarks
Xavier Bouthillier
Pierre Delaunay
Mirko Bronzi
Assya Trofimov
Brennan Nichyporuk
...
Dmitriy Serdyuk
Tal Arbel
C. Pal
Gaël Varoquaux
Pascal Vincent
109
151
0
01 Mar 2021
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OOD
BDL
68
61
0
25 Nov 2020
Meta Approach to Data Augmentation Optimization
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
79
35
0
14 Jun 2020
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OOD
BDL
81
96
0
01 May 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
88
289
0
24 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
136
656
0
20 Feb 2020
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OOD
UQCV
138
1,309
0
05 Dec 2019
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
77
208
0
16 Nov 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
278
3,508
0
30 Sep 2019
Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
Daniel Ho
Eric Liang
Ion Stoica
Pieter Abbeel
Xi Chen
83
404
0
14 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
629
4,814
0
13 May 2019
Fast AutoAugment
Sungbin Lim
Ildoo Kim
Taesup Kim
Chiheon Kim
Sungwoong Kim
110
599
0
01 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
198
3,458
0
28 Mar 2019
Data Augmentation for Bayesian Deep Learning
YueXing Wang
Nicholas G. Polson
Vadim Sokolov
UQCV
BDL
73
5
0
22 Mar 2019
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
92
86
0
16 Aug 2018
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
114
193
0
16 Mar 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
318
9,815
0
25 Oct 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
126
820
0
31 Mar 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
356
4,638
0
10 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
367
5,390
0
03 Nov 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
905
9,364
0
06 Jun 2015
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
384
7,981
0
13 Jun 2012
1