ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.11008
48
799

Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data

31 March 2017
Gintare Karolina Dziugaite
Daniel M. Roy
ArXivPDFHTML
Abstract

One of the defining properties of deep learning is that models are chosen to have many more parameters than available training data. In light of this capacity for overfitting, it is remarkable that simple algorithms like SGD reliably return solutions with low test error. One roadblock to explaining these phenomena in terms of implicit regularization, structural properties of the solution, and/or easiness of the data is that many learning bounds are quantitatively vacuous when applied to networks learned by SGD in this "deep learning" regime. Logically, in order to explain generalization, we need nonvacuous bounds. We return to an idea by Langford and Caruana (2001), who used PAC-Bayes bounds to compute nonvacuous numerical bounds on generalization error for stochastic two-layer two-hidden-unit neural networks via a sensitivity analysis. By optimizing the PAC-Bayes bound directly, we are able to extend their approach and obtain nonvacuous generalization bounds for deep stochastic neural network classifiers with millions of parameters trained on only tens of thousands of examples. We connect our findings to recent and old work on flat minima and MDL-based explanations of generalization.

View on arXiv
Comments on this paper