ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.12162
  4. Cited By
Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs

Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs

15 March 2025
Milan Papez
Martin Rektoris
Václav Smídl
Tomás Pevný
    TPM
ArXivPDFHTML

Papers citing "Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs"

32 / 32 papers shown
Title
What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
Lorenzo Loconte
Antonio Mari
G. Gala
Robert Peharz
Cassio de Campos
Erik Quaeghebeur
G. Vessio
Antonio Vergari
81
11
0
12 Sep 2024
Subtractive Mixture Models via Squaring: Representation and Learning
Subtractive Mixture Models via Squaring: Representation and Learning
Lorenzo Loconte
Aleksanteri Sladek
Stefan Mengel
Martin Trapp
Arno Solin
Nicolas Gillis
Antonio Vergari
TPM
85
21
0
01 Oct 2023
Tractable Probabilistic Graph Representation Learning with Graph-Induced
  Sum-Product Networks
Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks
Federico Errica
Mathias Niepert
TPM
60
5
0
17 May 2023
Understanding the Distillation Process from Deep Generative Models to
  Tractable Probabilistic Circuits
Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits
Xuejie Liu
Hoang Trung-Dung
Guy Van den Broeck
Yitao Liang
TPM
44
14
0
16 Feb 2023
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Hoang Trung-Dung
Honghua Zhang
Guy Van den Broeck
TPM
48
27
0
10 Oct 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits
  of One-shot Graph Generators
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
62
68
0
04 Apr 2022
A Survey on Deep Graph Generation: Methods and Applications
A Survey on Deep Graph Generation: Methods and Applications
Yanqiao Zhu
Yuanqi Du
Yinkai Wang
Yichen Xu
Jieyu Zhang
Qiang Liu
Shu Wu
3DV
GNN
89
72
0
13 Mar 2022
Score-based Generative Modeling of Graphs via the System of Stochastic
  Differential Equations
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Jaehyeong Jo
Seul Lee
Sung Ju Hwang
DiffM
63
224
0
05 Feb 2022
Tractable Regularization of Probabilistic Circuits
Tractable Regularization of Probabilistic Circuits
Hoang Trung-Dung
Guy Van den Broeck
TPM
49
33
0
04 Jun 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
220
199
0
01 Feb 2021
GraphEBM: Molecular Graph Generation with Energy-Based Models
GraphEBM: Molecular Graph Generation with Energy-Based Models
Meng Liu
Keqiang Yan
Bora Oztekin
Shuiwang Ji
64
88
0
31 Jan 2021
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei Wang
BDL
118
293
0
17 Jun 2020
Learning to Simulate Complex Physics with Graph Networks
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
133
1,088
0
21 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
162
437
0
26 Jan 2020
Efficient Graph Generation with Graph Recurrent Attention Networks
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao
Yujia Li
Yang Song
Shenlong Wang
C. Nash
William L. Hamilton
David Duvenaud
R. Urtasun
R. Zemel
GNN
127
334
0
02 Oct 2019
Graph Normalizing Flows
Graph Normalizing Flows
Jenny Liu
Aviral Kumar
Jimmy Ba
J. Kiros
Kevin Swersky
BDL
GNN
AI4CE
70
164
0
30 May 2019
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
BDL
100
192
0
28 May 2019
Bayesian Learning of Sum-Product Networks
Bayesian Learning of Sum-Product Networks
Martin Trapp
Robert Peharz
Hong Ge
Franz Pernkopf
Zoubin Ghahramani
TPM
52
51
0
26 May 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
135
1,319
0
10 Mar 2019
Relational Pooling for Graph Representations
Relational Pooling for Graph Representations
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
125
261
0
06 Mar 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
750
8,517
0
03 Jan 2019
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
116
209
0
07 Sep 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
287
3,128
0
09 Jul 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
69
455
0
23 May 2018
Graphite: Iterative Generative Modeling of Graphs
Graphite: Iterative Generative Modeling of Graphs
Aditya Grover
Aaron Zweig
Stefano Ermon
BDL
99
303
0
28 Mar 2018
Fréchet ChemNet Distance: A metric for generative models for molecules
  in drug discovery
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
Günter Klambauer
MedIm
93
338
0
26 Mar 2018
NetGAN: Generating Graphs via Random Walks
NetGAN: Generating Graphs via Random Walks
Aleksandar Bojchevski
Oleksandr Shchur
Daniel Zügner
Stephan Günnemann
GAN
GNN
167
361
0
02 Mar 2018
NeVAE: A Deep Generative Model for Molecular Graphs
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
60
217
0
14 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
107
849
0
09 Feb 2018
Modeling Relational Data with Graph Convolutional Networks
Modeling Relational Data with Graph Convolutional Networks
Michael Schlichtkrull
Thomas Kipf
Peter Bloem
Rianne van den Berg
Ivan Titov
Max Welling
GNN
183
4,812
0
17 Mar 2017
Bayesian Models of Graphs, Arrays and Other Exchangeable Random
  Structures
Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures
Peter Orbanz
Daniel M. Roy
154
245
0
30 Dec 2013
A Knowledge Compilation Map
A Knowledge Compilation Map
Adnan Darwiche
Pierre Marquis
82
950
0
09 Jun 2011
1