ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.05723
  4. Cited By
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
v1v2 (latest)

Training-Free Bayesianization for Low-Rank Adapters of Large Language Models

7 December 2024
Haizhou Shi
Yibin Wang
Ligong Han
Huatian Zhang
Hao Wang
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Training-Free Bayesianization for Low-Rank Adapters of Large Language Models"

48 / 48 papers shown
Title
Token-Level Uncertainty Estimation for Large Language Model Reasoning
Tunyu Zhang
Haizhou Shi
Yibin Wang
Hengyi Wang
Xiaoxiao He
...
Ligong Han
Kai Xu
Huatian Zhang
Dimitris N. Metaxas
Hao Wang
LRM
133
0
0
16 May 2025
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang
Haizhou Shi
Ligong Han
Dimitris N. Metaxas
Hao Wang
BDLUQLM
257
13
0
28 Jan 2025
Variational Language Concepts for Interpreting Foundation Language
  Models
Variational Language Concepts for Interpreting Foundation Language Models
Hengyi Wang
Shiwei Tan
Zhiqing Hong
Desheng Zhang
Hao Wang
166
3
0
04 Oct 2024
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations
  for Vision Foundation Models
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
Hengyi Wang
Shiwei Tan
Hao Wang
BDL
158
7
0
18 Jun 2024
MiLoRA: Harnessing Minor Singular Components for Parameter-Efficient LLM Finetuning
MiLoRA: Harnessing Minor Singular Components for Parameter-Efficient LLM Finetuning
Hanqing Wang
Zeguan Xiao
Shuo Wang
Guanhua Chen
Guanhua Chen
126
28
0
13 Jun 2024
Large Language Models Must Be Taught to Know What They Don't Know
Large Language Models Must Be Taught to Know What They Don't Know
Sanyam Kapoor
Nate Gruver
Manley Roberts
Katherine Collins
Arka Pal
Umang Bhatt
Adrian Weller
Samuel Dooley
Micah Goldblum
Andrew Gordon Wilson
119
25
0
12 Jun 2024
To Believe or Not to Believe Your LLM
To Believe or Not to Believe Your LLM
Yasin Abbasi-Yadkori
Ilja Kuzborskij
András György
Csaba Szepesvári
UQCV
175
62
0
04 Jun 2024
Kernel Language Entropy: Fine-grained Uncertainty Quantification for
  LLMs from Semantic Similarities
Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities
Alexander Nikitin
Jannik Kossen
Yarin Gal
Pekka Marttinen
UQCV
150
45
0
30 May 2024
Variational Bayesian Last Layers
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDLUQCV
149
34
0
17 Apr 2024
Language Model Cascades: Token-level uncertainty and beyond
Language Model Cascades: Token-level uncertainty and beyond
Neha Gupta
Harikrishna Narasimhan
Wittawat Jitkrittum
A. S. Rawat
A. Menon
Sanjiv Kumar
UQLM
146
56
0
15 Apr 2024
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Oleksandr Balabanov
Hampus Linander
UQCV
133
20
0
19 Feb 2024
Mistral 7B
Mistral 7B
Albert Q. Jiang
Alexandre Sablayrolles
A. Mensch
Chris Bamford
Devendra Singh Chaplot
...
Teven Le Scao
Thibaut Lavril
Thomas Wang
Timothée Lacroix
William El Sayed
MoELRM
171
2,266
0
10 Oct 2023
LoRA ensembles for large language model fine-tuning
LoRA ensembles for large language model fine-tuning
Xi Wang
Laurence Aitchison
Maja Rudolph
UQCV
125
39
0
29 Sep 2023
Bayesian Low-rank Adaptation for Large Language Models
Bayesian Low-rank Adaptation for Large Language Models
Adam X. Yang
Maxime Robeyns
Xi Wang
Laurence Aitchison
AI4CEBDL
190
56
0
24 Aug 2023
Llama 2: Open Foundation and Fine-Tuned Chat Models
Llama 2: Open Foundation and Fine-Tuned Chat Models
Hugo Touvron
Louis Martin
Kevin R. Stone
Peter Albert
Amjad Almahairi
...
Sharan Narang
Aurelien Rodriguez
Robert Stojnic
Sergey Edunov
Thomas Scialom
AI4MHALM
648
12,141
0
18 Jul 2023
Can LLMs Express Their Uncertainty? An Empirical Evaluation of
  Confidence Elicitation in LLMs
Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs
Miao Xiong
Zhiyuan Hu
Xinyang Lu
Yifei Li
Jie Fu
Junxian He
Bryan Hooi
246
452
0
22 Jun 2023
Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence
  Scores from Language Models Fine-Tuned with Human Feedback
Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence Scores from Language Models Fine-Tuned with Human Feedback
Katherine Tian
E. Mitchell
Allan Zhou
Archit Sharma
Rafael Rafailov
Huaxiu Yao
Chelsea Finn
Christopher D. Manning
188
357
0
24 May 2023
PaLM 2 Technical Report
PaLM 2 Technical Report
Rohan Anil
Andrew M. Dai
Orhan Firat
Melvin Johnson
Dmitry Lepikhin
...
Ce Zheng
Wei Zhou
Denny Zhou
Slav Petrov
Yonghui Wu
ReLMLRM
273
1,214
0
17 May 2023
LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of
  Large Language Models
LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models
Zhiqiang Hu
Lei Wang
Yihuai Lan
Wanyu Xu
Ee-Peng Lim
Lidong Bing
Xing Xu
Soujanya Poria
Roy Ka-wei Lee
ALM
198
275
0
04 Apr 2023
Pythia: A Suite for Analyzing Large Language Models Across Training and
  Scaling
Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
Stella Biderman
Hailey Schoelkopf
Quentin G. Anthony
Herbie Bradley
Kyle O'Brien
...
USVSN Sai Prashanth
Edward Raff
Aviya Skowron
Lintang Sutawika
Oskar van der Wal
170
1,312
0
03 Apr 2023
GPT-4 Technical Report
GPT-4 Technical Report
OpenAI OpenAI
OpenAI Josh Achiam
Steven Adler
Sandhini Agarwal
Lama Ahmad
...
Shengjia Zhao
Tianhao Zheng
Juntang Zhuang
William Zhuk
Barret Zoph
LLMAGMLLM
1.7K
14,870
0
15 Mar 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALMPILM
1.8K
13,560
0
27 Feb 2023
Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation
  in Natural Language Generation
Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation
Lorenz Kuhn
Y. Gal
Sebastian Farquhar
UQLM
253
313
0
19 Feb 2023
Emergent Abilities of Large Language Models
Emergent Abilities of Large Language Models
Jason W. Wei
Yi Tay
Rishi Bommasani
Colin Raffel
Barret Zoph
...
Tatsunori Hashimoto
Oriol Vinyals
Percy Liang
J. Dean
W. Fedus
ELMReLMLRM
326
2,527
0
15 Jun 2022
Teaching Models to Express Their Uncertainty in Words
Teaching Models to Express Their Uncertainty in Words
Stephanie C. Lin
Jacob Hilton
Owain Evans
OOD
147
425
0
28 May 2022
PaLM: Scaling Language Modeling with Pathways
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Gaurav Mishra
...
Kathy Meier-Hellstern
Douglas Eck
J. Dean
Slav Petrov
Noah Fiedel
PILMLRM
853
6,325
0
05 Apr 2022
Rethinking the Role of Demonstrations: What Makes In-Context Learning
  Work?
Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Sewon Min
Xinxi Lyu
Ari Holtzman
Mikel Artetxe
M. Lewis
Hannaneh Hajishirzi
Luke Zettlemoyer
LLMAGLRM
200
1,507
0
25 Feb 2022
Finetuned Language Models Are Zero-Shot Learners
Finetuned Language Models Are Zero-Shot Learners
Jason W. Wei
Maarten Bosma
Vincent Zhao
Kelvin Guu
Adams Wei Yu
Brian Lester
Nan Du
Andrew M. Dai
Quoc V. Le
ALMUQCV
418
3,814
0
03 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
246
1,179
0
07 Jul 2021
Bayesian Attention Belief Networks
Bayesian Attention Belief Networks
Shujian Zhang
Xinjie Fan
Bo Chen
Mingyuan Zhou
BDL
114
32
0
09 Jun 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
385
1,952
0
12 Nov 2020
Bayesian Attention Modules
Bayesian Attention Modules
Xinjie Fan
Shujian Zhang
Bo Chen
Mingyuan Zhou
183
62
0
20 Oct 2020
Measuring Massive Multitask Language Understanding
Measuring Massive Multitask Language Understanding
Dan Hendrycks
Collin Burns
Steven Basart
Andy Zou
Mantas Mazeika
Basel Alomair
Jacob Steinhardt
ELMRALM
555
4,587
0
07 Sep 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
1.3K
42,754
0
28 May 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PERUD
274
1,445
0
21 Oct 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OODUQCVBDL
117
302
0
04 Jun 2019
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
Christopher Clark
Kenton Lee
Ming-Wei Chang
Tom Kwiatkowski
Michael Collins
Kristina Toutanova
474
1,565
0
24 May 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
141
106
0
03 Apr 2019
Piecewise Strong Convexity of Neural Networks
Piecewise Strong Convexity of Neural Networks
Tristan Milne
76
21
0
30 Oct 2018
Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book
  Question Answering
Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering
Todor Mihaylov
Peter Clark
Tushar Khot
Ashish Sabharwal
182
1,574
0
08 Sep 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
213
271
0
13 Jun 2018
Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
  Challenge
Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge
Peter Clark
Isaac Cowhey
Oren Etzioni
Tushar Khot
Ashish Sabharwal
Carissa Schoenick
Oyvind Tafjord
ELMRALMLRM
306
2,680
0
14 Mar 2018
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
305
5,901
0
14 Jun 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
1.1K
5,863
0
05 Dec 2016
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Hao Wang
Xingjian Shi
Dit-Yan Yeung
BDL
118
83
0
02 Nov 2016
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Hao Wang
Dit-Yan Yeung
BDL
81
225
0
24 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
1.1K
9,393
0
06 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCVBDL
249
945
0
18 Feb 2015
1