ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.16709
  4. Cited By
Universal approximation property of ODENet and ResNet with a single
  activation function

Universal approximation property of ODENet and ResNet with a single activation function

22 October 2024
M. Kimura
Kazunori Matsui
Yosuke Mizuno
ArXiv (abs)PDFHTML

Papers citing "Universal approximation property of ODENet and ResNet with a single activation function"

13 / 13 papers shown
Title
Learning on Manifolds: Universal Approximations Properties using
  Geometric Controllability Conditions for Neural ODEs
Learning on Manifolds: Universal Approximations Properties using Geometric Controllability Conditions for Neural ODEs
Karthik Elamvazhuthi
Xuechen Zhang
Samet Oymak
Fabio Pasqualetti
AI4CE
51
6
0
15 May 2023
Universal Approximation Properties for an ODENet and a ResNet:
  Mathematical Analysis and Numerical Experiments
Universal Approximation Properties for an ODENet and a ResNet: Mathematical Analysis and Numerical Experiments
Yuto Aizawa
M. Kimura
Kazunori Matsui
16
2
0
22 Dec 2020
Universal Approximation Property of Neural Ordinary Differential
  Equations
Universal Approximation Property of Neural Ordinary Differential Equations
Takeshi Teshima
Koichi Tojo
Masahiro Ikeda
Isao Ishikawa
Kenta Oono
77
40
0
04 Dec 2020
Universal Approximation Power of Deep Residual Neural Networks via
  Nonlinear Control Theory
Universal Approximation Power of Deep Residual Neural Networks via Nonlinear Control Theory
Paulo Tabuada
Bahman Gharesifard
99
26
0
12 Jul 2020
Deep Learning via Dynamical Systems: An Approximation Perspective
Deep Learning via Dynamical Systems: An Approximation Perspective
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TSAI4CE
88
109
0
22 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
213
1,717
0
05 Dec 2019
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
158
881
0
02 Oct 2018
ResNet with one-neuron hidden layers is a Universal Approximator
ResNet with one-neuron hidden layers is a Universal Approximator
Hongzhou Lin
Stefanie Jegelka
113
229
0
28 Jun 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
446
5,168
0
19 Jun 2018
Neural Network with Unbounded Activation Functions is Universal
  Approximator
Neural Network with Unbounded Activation Functions is Universal Approximator
Sho Sonoda
Noboru Murata
70
336
0
14 May 2015
Convolutional Neural Networks at Constrained Time Cost
Convolutional Neural Networks at Constrained Time Cost
Kaiming He
Jian Sun
3DV
88
1,292
0
04 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
494
43,698
0
17 Sep 2014
Deep Learning in Neural Networks: An Overview
Deep Learning in Neural Networks: An Overview
Jürgen Schmidhuber
HAI
250
16,378
0
30 Apr 2014
1