ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.03964
  4. Cited By
Variational Language Concepts for Interpreting Foundation Language
  Models
v1v2 (latest)

Variational Language Concepts for Interpreting Foundation Language Models

4 October 2024
Hengyi Wang
Shiwei Tan
Zhiqing Hong
Desheng Zhang
Hao Wang
ArXiv (abs)PDFHTML

Papers citing "Variational Language Concepts for Interpreting Foundation Language Models"

42 / 42 papers shown
Title
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang
Haizhou Shi
Ligong Han
Dimitris N. Metaxas
Hao Wang
BDLUQLM
212
13
0
28 Jan 2025
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Haizhou Shi
Yibin Wang
Ligong Han
Huatian Zhang
Hao Wang
UQCV
199
2
0
07 Dec 2024
Towards Domain Adaptive Neural Contextual Bandits
Towards Domain Adaptive Neural Contextual Bandits
Ziyan Wang
Hao Wang
Hao Wang
193
0
0
13 Jun 2024
Self-Interpretable Time Series Prediction with Counterfactual
  Explanations
Self-Interpretable Time Series Prediction with Counterfactual Explanations
Jingquan Yan
Hao Wang
BDLAI4TS
54
13
0
09 Jun 2023
Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain
  Adaptation
Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation
Zihao Xu
Guang-Yuan Hao
Hao He
Hao Wang
83
19
0
06 Feb 2023
Language in a Bottle: Language Model Guided Concept Bottlenecks for
  Interpretable Image Classification
Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification
Yue Yang
Artemis Panagopoulou
Shenghao Zhou
Daniel Jin
Chris Callison-Burch
Mark Yatskar
116
232
0
21 Nov 2022
Towards Faithful Model Explanation in NLP: A Survey
Towards Faithful Model Explanation in NLP: A Survey
Qing Lyu
Marianna Apidianaki
Chris Callison-Burch
XAI
183
118
0
22 Sep 2022
Is Neural Topic Modelling Better than Clustering? An Empirical Study on
  Clustering with Contextual Embeddings for Topics
Is Neural Topic Modelling Better than Clustering? An Empirical Study on Clustering with Contextual Embeddings for Topics
Zihan Zhang
Meng Fang
Ling-Hao Chen
Mohammad-Reza Namazi-Rad
45
70
0
21 Apr 2022
Representing Mixtures of Word Embeddings with Mixtures of Topic
  Embeddings
Representing Mixtures of Word Embeddings with Mixtures of Topic Embeddings
Dongsheng Wang
D. Guo
He Zhao
Huangjie Zheng
Korawat Tanwisuth
Bo Chen
Mingyuan Zhou
71
41
0
03 Mar 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model
  Representations
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations
Yu Meng
Yunyi Zhang
Jiaxin Huang
Yu Zhang
Jiawei Han
88
58
0
09 Feb 2022
Defining and Quantifying the Emergence of Sparse Concepts in DNNs
Defining and Quantifying the Emergence of Sparse Concepts in DNNs
Jie Ren
Mingjie Li
Qirui Chen
Huiqi Deng
Quanshi Zhang
66
33
0
11 Nov 2021
Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network
Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network
Zhibin Duan
Dongsheng Wang
Bo Chen
Chaojie Wang
Wenchao Chen
Yewen Li
Jie Ren
Mingyuan Zhou
BDL
87
42
0
30 Jun 2021
Best of both worlds: local and global explanations with
  human-understandable concepts
Best of both worlds: local and global explanations with human-understandable concepts
Jessica Schrouff
Sebastien Baur
Shaobo Hou
Diana Mincu
Eric Loreaux
Ralph Blanes
James Wexler
Alan Karthikesalingam
Been Kim
FAtt
71
28
0
16 Jun 2021
Concept Bottleneck Models
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
99
833
0
09 Jul 2020
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
Pengcheng He
Xiaodong Liu
Jianfeng Gao
Weizhu Chen
AAML
163
2,750
0
05 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
856
42,332
0
28 May 2020
An Information Bottleneck Approach for Controlling Conciseness in
  Rationale Extraction
An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction
Bhargavi Paranjape
Mandar Joshi
John Thickstun
Hannaneh Hajishirzi
Luke Zettlemoyer
59
101
0
01 May 2020
Corpus-level and Concept-based Explanations for Interpretable Document
  Classification
Corpus-level and Concept-based Explanations for Interpretable Document Classification
Tian Shi
Xuchao Zhang
Ping Wang
Chandan K. Reddy
FAtt
50
9
0
24 Apr 2020
Restricting the Flow: Information Bottlenecks for Attribution
Restricting the Flow: Information Bottlenecks for Attribution
Karl Schulz
Leon Sixt
Federico Tombari
Tim Landgraf
FAtt
61
190
0
02 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
532
42,591
0
03 Dec 2019
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
  Generation, Translation, and Comprehension
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
M. Lewis
Yinhan Liu
Naman Goyal
Marjan Ghazvininejad
Abdel-rahman Mohamed
Omer Levy
Veselin Stoyanov
Luke Zettlemoyer
AIMatVLM
263
10,851
0
29 Oct 2019
ALBERT: A Lite BERT for Self-supervised Learning of Language
  Representations
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Zhenzhong Lan
Mingda Chen
Sebastian Goodman
Kevin Gimpel
Piyush Sharma
Radu Soricut
SSLAIMat
373
6,467
0
26 Sep 2019
RoBERTa: A Robustly Optimized BERT Pretraining Approach
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
M. Lewis
Luke Zettlemoyer
Veselin Stoyanov
AIMat
674
24,541
0
26 Jul 2019
Topic Modeling in Embedding Spaces
Topic Modeling in Embedding Spaces
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
BDL
186
643
0
08 Jul 2019
XLNet: Generalized Autoregressive Pretraining for Language Understanding
XLNet: Generalized Autoregressive Pretraining for Language Understanding
Zhilin Yang
Zihang Dai
Yiming Yang
J. Carbonell
Ruslan Salakhutdinov
Quoc V. Le
AI4CE
236
8,447
0
19 Jun 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,175
0
11 Oct 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
246
1,188
0
27 Jun 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
1.1K
7,196
0
20 Apr 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension
  Reduction
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
195
9,473
0
09 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
219
1,849
0
30 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
230
5,061
0
02 Nov 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
Accelerated Hierarchical Density Clustering
Accelerated Hierarchical Density Clustering
Leland McInnes
John Healy
53
403
0
20 May 2017
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Hao Wang
Xingjian Shi
Dit-Yan Yeung
BDL
73
83
0
02 Nov 2016
Bibliographic Analysis with the Citation Network Topic Model
Bibliographic Analysis with the Citation Network Topic Model
Kar Wai Lim
Wray Buntine
82
55
0
22 Sep 2016
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Hao Wang
Dit-Yan Yeung
BDL
52
225
0
24 Aug 2016
Nonparametric Spherical Topic Modeling with Word Embeddings
Nonparametric Spherical Topic Modeling with Word Embeddings
N. Batmanghelich
A. Saeedi
Karthik Narasimhan
S. Gershman
63
88
0
01 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,027
0
16 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
680
31,544
0
16 Jan 2013
Continuous Time Dynamic Topic Models
Continuous Time Dynamic Topic Models
Chong-Jun Wang
David M. Blei
David Heckerman
105
511
0
13 Jun 2012
Supervised Topic Models
Supervised Topic Models
David M. Blei
Jon D. McAuliffe
BDL
121
1,788
0
03 Mar 2010
1