34
31

Defining and Quantifying the Emergence of Sparse Concepts in DNNs

Abstract

This paper aims to illustrate the concept-emerging phenomenon in a trained DNN. Specifically, we find that the inference score of a DNN can be disentangled into the effects of a few interactive concepts. These concepts can be understood as causal patterns in a sparse, symbolic causal graph, which explains the DNN. The faithfulness of using such a causal graph to explain the DNN is theoretically guaranteed, because we prove that the causal graph can well mimic the DNN's outputs on an exponential number of different masked samples. Besides, such a causal graph can be further simplified and re-written as an And-Or graph (AOG), without losing much explanation accuracy.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.