ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15131
  4. Cited By
KalMamba: Towards Efficient Probabilistic State Space Models for RL
  under Uncertainty

KalMamba: Towards Efficient Probabilistic State Space Models for RL under Uncertainty

21 June 2024
P. Becker
Niklas Freymuth
Gerhard Neumann
    Mamba
ArXivPDFHTML

Papers citing "KalMamba: Towards Efficient Probabilistic State Space Models for RL under Uncertainty"

24 / 24 papers shown
Title
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
212
1
0
20 Feb 2025
Deep Latent State Space Models for Time-Series Generation
Deep Latent State Space Models for Time-Series Generation
Linqi Zhou
Michael Poli
Winnie Xu
Stefano Massaroli
Stefano Ermon
BDL
AI4TS
62
35
0
24 Dec 2022
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
47
9
0
17 Oct 2022
Liquid Structural State-Space Models
Liquid Structural State-Space Models
Ramin Hasani
Mathias Lechner
Tsun-Hsuan Wang
Makram Chahine
Alexander Amini
Daniela Rus
AI4TS
136
101
0
26 Sep 2022
DayDreamer: World Models for Physical Robot Learning
DayDreamer: World Models for Physical Robot Learning
Philipp Wu
Alejandro Escontrela
Danijar Hafner
Ken Goldberg
Pieter Abbeel
102
294
0
28 Jun 2022
Diagonal State Spaces are as Effective as Structured State Spaces
Diagonal State Spaces are as Effective as Structured State Spaces
Ankit Gupta
Albert Gu
Jonathan Berant
111
305
0
27 Mar 2022
Learning Representations for Pixel-based Control: What Matters and Why?
Learning Representations for Pixel-based Control: What Matters and Why?
Manan Tomar
Utkarsh Aashu Mishra
Amy Zhang
Matthew E. Taylor
SSL
OffRL
58
25
0
15 Nov 2021
Action-Conditional Recurrent Kalman Networks For Forward and Inverse
  Dynamics Learning
Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning
Vaisakh Shaj
P. Becker
Le Chen
Harit Pandya
Niels van Duijkeren
C. J. Taylor
Marc Hanheide
Gerhard Neumann
AI4CE
36
15
0
20 Oct 2020
Mastering Atari with Discrete World Models
Mastering Atari with Discrete World Models
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
DRL
95
852
0
05 Oct 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
493
42,407
0
03 Dec 2019
Dream to Control: Learning Behaviors by Latent Imagination
Dream to Control: Learning Behaviors by Latent Imagination
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
VLM
113
1,354
0
03 Dec 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
80
380
0
01 Jul 2019
Temporal Parallelization of Bayesian Smoothers
Temporal Parallelization of Bayesian Smoothers
Simo Särkkä
Á. F. García-Fernández
161
41
0
30 May 2019
Switching Linear Dynamics for Variational Bayes Filtering
Switching Linear Dynamics for Variational Bayes Filtering
Philip Becker-Ehmck
Jan Peters
Patrick van der Smagt
BDL
55
46
0
29 May 2019
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep
  Feature Spaces
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces
P. Becker
Harit Pandya
Gregor H. W. Gebhardt
Cheng Zhao
James Taylor
Gerhard Neumann
BDL
58
97
0
17 May 2019
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
133
2,425
0
13 Dec 2018
Learning Latent Dynamics for Planning from Pixels
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
86
1,436
0
12 Nov 2018
World Models
World Models
David R Ha
Jürgen Schmidhuber
SyDa
119
1,083
0
27 Mar 2018
Disentangled Sequential Autoencoder
Disentangled Sequential Autoencoder
Yingzhen Li
Stephan Mandt
CoGe
71
271
0
08 Mar 2018
DeepMind Control Suite
DeepMind Control Suite
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
...
A. Abdolmaleki
J. Merel
Andrew Lefrancq
Timothy Lillicrap
Martin Riedmiller
ELM
LM&Ro
BDL
133
1,134
0
02 Jan 2018
Robust Locally-Linear Controllable Embedding
Robust Locally-Linear Controllable Embedding
Ershad Banijamali
Rui Shu
Mohammad Ghavamzadeh
Hung Bui
A. Ghodsi
BDL
54
95
0
15 Oct 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
256
214
0
31 May 2017
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CE
AIMat
242
6,776
0
03 Sep 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
450
16,933
0
20 Dec 2013
1