ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.14789
  4. Cited By
Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised
  Learning

Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning

22 February 2024
Johnathan Xie
Yoonho Lee
Annie S. Chen
Chelsea Finn
ArXivPDFHTML

Papers citing "Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning"

34 / 34 papers shown
Title
URLOST: Unsupervised Representation Learning without Stationarity or Topology
URLOST: Unsupervised Representation Learning without Stationarity or Topology
Zeyu Yun
Juexiao Zhang
Bruno A. Olshausen
Yann LeCun
138
1
0
06 Oct 2023
MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers
MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers
L. Yu
Daniel Simig
Colin Flaherty
Armen Aghajanyan
Luke Zettlemoyer
M. Lewis
56
89
0
12 May 2023
Image as a Foreign Language: BEiT Pretraining for All Vision and
  Vision-Language Tasks
Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks
Wenhui Wang
Hangbo Bao
Li Dong
Johan Bjorck
Zhiliang Peng
...
Kriti Aggarwal
O. Mohammed
Saksham Singhal
Subhojit Som
Furu Wei
MLLM
VLM
ViT
133
640
0
22 Aug 2022
Masked Autoencoders that Listen
Masked Autoencoders that Listen
Po-Yao (Bernie) Huang
Hu Xu
Juncheng Billy Li
Alexei Baevski
Michael Auli
Wojciech Galuba
Florian Metze
Christoph Feichtenhofer
68
280
0
13 Jul 2022
DeiT III: Revenge of the ViT
DeiT III: Revenge of the ViT
Hugo Touvron
Matthieu Cord
Hervé Jégou
ViT
116
407
0
14 Apr 2022
PaLM: Scaling Language Modeling with Pathways
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Gaurav Mishra
...
Kathy Meier-Hellstern
Douglas Eck
J. Dean
Slav Petrov
Noah Fiedel
PILM
LRM
416
6,202
0
05 Apr 2022
Masked Autoencoders for Point Cloud Self-supervised Learning
Masked Autoencoders for Point Cloud Self-supervised Learning
Yatian Pang
Wenxiao Wang
Francis E. H. Tay
Wen Liu
Yonghong Tian
Liuliang Yuan
3DPC
ViT
75
466
0
13 Mar 2022
On Embeddings for Numerical Features in Tabular Deep Learning
On Embeddings for Numerical Features in Tabular Deep Learning
Yura Gorishniy
Ivan Rubachev
Artem Babenko
LMTD
79
171
0
10 Mar 2022
data2vec: A General Framework for Self-supervised Learning in Speech,
  Vision and Language
data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language
Alexei Baevski
Wei-Ning Hsu
Qiantong Xu
Arun Babu
Jiatao Gu
Michael Auli
SSL
VLM
ViT
89
852
0
07 Feb 2022
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point
  Modeling
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
Xumin Yu
Lulu Tang
Yongming Rao
Tiejun Huang
Jie Zhou
Jiwen Lu
3DPC
111
669
0
29 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
427
7,705
0
11 Nov 2021
Perceiver IO: A General Architecture for Structured Inputs & Outputs
Perceiver IO: A General Architecture for Structured Inputs & Outputs
Andrew Jaegle
Sebastian Borgeaud
Jean-Baptiste Alayrac
Carl Doersch
Catalin Ionescu
...
Olivier J. Hénaff
M. Botvinick
Andrew Zisserman
Oriol Vinyals
João Carreira
MLLM
VLM
GNN
52
574
0
30 Jul 2021
Revisiting Deep Learning Models for Tabular Data
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
94
720
0
22 Jun 2021
ByT5: Towards a token-free future with pre-trained byte-to-byte models
ByT5: Towards a token-free future with pre-trained byte-to-byte models
Linting Xue
Aditya Barua
Noah Constant
Rami Al-Rfou
Sharan Narang
Mihir Kale
Adam Roberts
Colin Raffel
83
501
0
28 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
611
6,029
0
29 Apr 2021
Perceiver: General Perception with Iterative Attention
Perceiver: General Perception with Iterative Attention
Andrew Jaegle
Felix Gimeno
Andrew Brock
Andrew Zisserman
Oriol Vinyals
João Carreira
VLM
ViT
MDE
159
1,007
0
04 Mar 2021
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
  Representations
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
Alexei Baevski
Henry Zhou
Abdel-rahman Mohamed
Michael Auli
SSL
221
5,767
0
20 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
327
6,773
0
13 Jun 2020
Gradient Boosting Neural Networks: GrowNet
Gradient Boosting Neural Networks: GrowNet
Sarkhan Badirli
Xuanqing Liu
Zhengming Xing
Avradeep Bhowmik
Khoa D. Doan
S. Keerthi
FedML
54
84
0
19 Feb 2020
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
367
20,053
0
23 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
208
3,480
0
30 Sep 2019
Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
Sergei Popov
S. Morozov
Artem Babenko
LMTD
132
310
0
13 Sep 2019
TabNet: Attentive Interpretable Tabular Learning
TabNet: Attentive Interpretable Tabular Learning
Sercan O. Arik
Tomas Pfister
LMTD
145
1,343
0
20 Aug 2019
RoBERTa: A Robustly Optimized BERT Pretraining Approach
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
M. Lewis
Luke Zettlemoyer
Veselin Stoyanov
AIMat
514
24,351
0
26 Jul 2019
Evaluating Protein Transfer Learning with TAPE
Evaluating Protein Transfer Learning with TAPE
Roshan Rao
Nicholas Bhattacharya
Neil Thomas
Yan Duan
Xi Chen
John F. Canny
Pieter Abbeel
Yun S. Song
SSL
86
796
0
19 Jun 2019
Contrastive Multiview Coding
Contrastive Multiview Coding
Yonglong Tian
Dilip Krishnan
Phillip Isola
SSL
151
2,395
0
13 Jun 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
604
4,766
0
13 May 2019
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
103
706
0
22 Nov 2018
AutoInt: Automatic Feature Interaction Learning via Self-Attentive
  Neural Networks
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Weiping Song
Chence Shi
Zhiping Xiao
Zhijian Duan
Yewen Xu
Ming Zhang
Jian Tang
CML
56
854
0
29 Oct 2018
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
118
1,771
0
24 May 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
269
9,743
0
25 Oct 2017
Self-Normalizing Neural Networks
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
364
2,507
0
08 Jun 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
323
1,825
0
02 Mar 2017
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
187
2,352
0
30 Mar 2016
1