Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.09262
Cited By
A Heavy-Tailed Algebra for Probabilistic Programming
15 June 2023
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Heavy-Tailed Algebra for Probabilistic Programming"
19 / 19 papers shown
Title
Fat-Tailed Variational Inference with Anisotropic Tail Adaptive Flows
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
48
11
0
16 May 2022
The Heavy-Tail Phenomenon in SGD
Mert Gurbuzbalaban
Umut Simsekli
Lingjiong Zhu
45
126
0
08 Jun 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
202
1,691
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
475
42,407
0
03 Dec 2019
Static Analysis for Probabilistic Programs
Ryan Bernstein
TPM
47
20
0
10 Sep 2019
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
41
26
0
20 Jul 2019
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
174
774
0
10 Jun 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
85
247
0
18 Jan 2019
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
58
56
0
05 Nov 2018
Variational Inference with Tail-adaptive f-Divergence
Dilin Wang
Hao Liu
Qiang Liu
44
55
0
29 Oct 2018
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
155
1,053
0
18 Oct 2018
Yes, but Did It Work?: Evaluating Variational Inference
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
52
136
0
07 Feb 2018
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
117
362
0
01 Jun 2017
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
S. M. Ali Eslami
N. Heess
T. Weber
Yuval Tassa
David Szepesvari
Koray Kavukcuoglu
Geoffrey E. Hinton
3DV
BDL
OCL
122
550
0
28 Mar 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
106
717
0
02 Mar 2016
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
268
1,245
0
01 Sep 2015
Pareto Smoothed Importance Sampling
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
66
242
0
09 Jul 2015
Programming with models: writing statistical algorithms for general model structures with NIMBLE
P. de Valpine
Daniel Turek
C. Paciorek
Clifford Anderson-Bergman
D. Lang
Rastislav Bodík
59
854
0
19 May 2015
Church: a language for generative models
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
J. Tenenbaum
100
817
0
13 Jun 2012
1