Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.14859
Cited By
Mind the Label Shift of Augmentation-based Graph OOD Generalization
27 March 2023
Junchi Yu
Jian Liang
Ran He
Re-assign community
ArXiv (abs)
PDF
HTML
Github (17★)
Papers citing
"Mind the Label Shift of Augmentation-based Graph OOD Generalization"
40 / 40 papers shown
Title
Exploring Criteria of Loss Reweighting to Enhance LLM Unlearning
Puning Yang
Qizhou Wang
Zhuo Huang
Tongliang Liu
Chengqi Zhang
Bo Han
MU
107
0
0
17 May 2025
GOLD: Graph Out-of-Distribution Detection via Implicit Adversarial Latent Generation
Danny Wang
Ruihong Qiu
Guangdong Bai
Zi Huang
363
3
0
09 Feb 2025
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Song Wang
Xiaodong Yang
Rashidul Islam
Huiyuan Chen
Minghua Xu
Jundong Li
Yiwei Cai
OODD
240
3
0
07 Jan 2025
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODD
CML
153
0
0
29 Oct 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
131
5
0
25 Oct 2024
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
92
28
0
20 May 2022
Out-Of-Distribution Generalization on Graphs: A Survey
Haoyang Li
Xin Eric Wang
Ziwei Zhang
Wenwu Zhu
OOD
CML
110
101
0
16 Feb 2022
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
155
231
0
30 Jan 2022
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
149
535
0
31 Aug 2021
Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification
Shyam A. Tailor
R. D. Jong
Tiago Azevedo
Matthew Mattina
Partha P. Maji
3DPC
GNN
43
12
0
13 Aug 2021
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
62
269
0
11 Jun 2021
Recognizing Predictive Substructures with Subgraph Information Bottleneck
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
61
45
0
20 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
98
110
0
08 Mar 2021
Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization
Aseem Baranwal
Kimon Fountoulakis
Aukosh Jagannath
OODD
113
76
0
13 Feb 2021
Graph Neural Networks in Recommender Systems: A Survey
Shiwen Wu
Fei Sun
Wentao Zhang
Xu Xie
Tengjiao Wang
GNN
153
1,230
0
04 Nov 2020
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
61
383
0
14 Oct 2020
Graph Information Bottleneck for Subgraph Recognition
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
47
157
0
12 Oct 2020
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,366
0
08 Oct 2020
Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization
Qi Zhu
Carl Yang
Yidan Xu
Haonan Wang
Chao Zhang
Jiawei Han
100
120
0
11 Sep 2020
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
121
1,486
0
04 Jul 2020
Graph Structure Learning for Robust Graph Neural Networks
Wei Jin
Yao Ma
Xiaorui Liu
Xianfeng Tang
Suhang Wang
Jiliang Tang
OOD
AAML
84
706
0
20 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
306
2,732
0
02 May 2020
Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks
Tian Bian
Xi Xiao
Tingyang Xu
P. Zhao
Wenbing Huang
Yu Rong
Junzhou Huang
GNN
64
599
0
17 Jan 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
85
546
0
06 Dec 2019
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,243
0
20 Nov 2019
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
266
863
0
28 Sep 2019
A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models
Heng Chang
Yu Rong
Tingyang Xu
Wenbing Huang
Honglei Zhang
Peng Cui
Wenwu Zhu
Junzhou Huang
AAML
70
153
0
04 Aug 2019
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CE
SSL
SSeg
GNN
132
1,092
0
11 May 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
150
1,328
0
10 Mar 2019
Simplifying Graph Convolutional Networks
Felix Wu
Tianyi Zhang
Amauri Souza
Christopher Fifty
Tao Yu
Kilian Q. Weinberger
GNN
244
3,179
0
19 Feb 2019
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
222
1,691
0
14 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,681
0
01 Oct 2018
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi
Hongseok Namkoong
Ozan Sener
John C. Duchi
Vittorio Murino
Silvio Savarese
OOD
119
784
0
30 May 2018
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
133
1,774
0
24 May 2018
Robust Optimization over Multiple Domains
Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
OOD
74
71
0
19 May 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
352
1,369
0
12 Feb 2018
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
509
15,300
0
07 Jun 2017
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDL
UQCV
179
593
0
22 May 2017
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
344
5,372
0
03 Nov 2016
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
122
973
0
06 Jan 2015
1