ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.01332
39
955

Causal inference using invariant prediction: identification and confidence intervals

6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
    OOD
ArXivPDFHTML
Abstract

What is the difference of a prediction that is made with a causal model and a non-causal model? Suppose we intervene on the predictor variables or change the whole environment. The predictions from a causal model will in general work as well under interventions as for observational data. In contrast, predictions from a non-causal model can potentially be very wrong if we actively intervene on variables. Here, we propose to exploit this invariance of a prediction under a causal model for causal inference: given different experimental settings (for example various interventions) we collect all models that do show invariance in their predictive accuracy across settings and interventions. The causal model will be a member of this set of models with high probability. This approach yields valid confidence intervals for the causal relationships in quite general scenarios. We examine the example of structural equation models in more detail and provide sufficient assumptions under which the set of causal predictors becomes identifiable. We further investigate robustness properties of our approach under model misspecification and discuss possible extensions. The empirical properties are studied for various data sets, including large-scale gene perturbation experiments.

View on arXiv
Comments on this paper