ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.14859
  4. Cited By
Mind the Label Shift of Augmentation-based Graph OOD Generalization

Mind the Label Shift of Augmentation-based Graph OOD Generalization

27 March 2023
Junchi Yu
Jian Liang
Ran He
ArXiv (abs)PDFHTMLGithub (17★)

Papers citing "Mind the Label Shift of Augmentation-based Graph OOD Generalization"

40 / 40 papers shown
Title
Exploring Criteria of Loss Reweighting to Enhance LLM Unlearning
Exploring Criteria of Loss Reweighting to Enhance LLM Unlearning
Puning Yang
Qizhou Wang
Zhuo Huang
Tongliang Liu
Chengqi Zhang
Bo Han
MU
107
0
0
17 May 2025
GOLD: Graph Out-of-Distribution Detection via Implicit Adversarial Latent Generation
GOLD: Graph Out-of-Distribution Detection via Implicit Adversarial Latent Generation
Danny Wang
Ruihong Qiu
Guangdong Bai
Zi Huang
361
3
0
09 Feb 2025
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Song Wang
Xiaodong Yang
Rashidul Islam
Huiyuan Chen
Minghua Xu
Jundong Li
Yiwei Cai
OODD
240
3
0
07 Jan 2025
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODDCML
153
0
0
29 Oct 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
131
5
0
25 Oct 2024
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and
  Privacy Protection
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
92
28
0
20 May 2022
Out-Of-Distribution Generalization on Graphs: A Survey
Out-Of-Distribution Generalization on Graphs: A Survey
Haoyang Li
Xin Eric Wang
Ziwei Zhang
Wenwu Zhu
OODCML
110
101
0
16 Feb 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OODAI4CE
155
231
0
30 Jan 2022
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CMLOOD
149
535
0
31 Aug 2021
Towards Efficient Point Cloud Graph Neural Networks Through
  Architectural Simplification
Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification
Shyam A. Tailor
R. D. Jong
Tiago Azevedo
Matthew Mattina
Partha P. Maji
3DPCGNN
43
12
0
13 Aug 2021
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
62
269
0
11 Jun 2021
Recognizing Predictive Substructures with Subgraph Information
  Bottleneck
Recognizing Predictive Substructures with Subgraph Information Bottleneck
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
61
45
0
20 Mar 2021
Size-Invariant Graph Representations for Graph Classification
  Extrapolations
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
98
110
0
08 Mar 2021
Graph Convolution for Semi-Supervised Classification: Improved Linear
  Separability and Out-of-Distribution Generalization
Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization
Aseem Baranwal
Kimon Fountoulakis
Aukosh Jagannath
OODD
112
76
0
13 Feb 2021
Graph Neural Networks in Recommender Systems: A Survey
Graph Neural Networks in Recommender Systems: A Survey
Shiwen Wu
Fei Sun
Wentao Zhang
Xu Xie
Tengjiao Wang
GNN
153
1,230
0
04 Nov 2020
Environment Inference for Invariant Learning
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
61
383
0
14 Oct 2020
Graph Information Bottleneck for Subgraph Recognition
Graph Information Bottleneck for Subgraph Recognition
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
47
157
0
12 Oct 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,366
0
08 Oct 2020
Transfer Learning of Graph Neural Networks with Ego-graph Information
  Maximization
Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization
Qi Zhu
Carl Yang
Yidan Xu
Haonan Wang
Chao Zhang
Jiawei Han
100
120
0
11 Sep 2020
Simple and Deep Graph Convolutional Networks
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
121
1,486
0
04 Jul 2020
Graph Structure Learning for Robust Graph Neural Networks
Graph Structure Learning for Robust Graph Neural Networks
Wei Jin
Yao Ma
Xiaorui Liu
Xianfeng Tang
Suhang Wang
Jiliang Tang
OODAAML
84
706
0
20 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
306
2,732
0
02 May 2020
Rumor Detection on Social Media with Bi-Directional Graph Convolutional
  Networks
Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks
Tian Bian
Xi Xiao
Tingyang Xu
P. Zhao
Wenbing Huang
Yu Rong
Junzhou Huang
GNN
64
599
0
17 Jan 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
85
546
0
06 Dec 2019
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,243
0
20 Nov 2019
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
266
863
0
28 Sep 2019
A Restricted Black-box Adversarial Framework Towards Attacking Graph
  Embedding Models
A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models
Heng Chang
Yu Rong
Tingyang Xu
Wenbing Huang
Honglei Zhang
Peng Cui
Wenwu Zhu
Junzhou Huang
AAML
70
153
0
04 Aug 2019
Graph U-Nets
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CESSLSSegGNN
132
1,092
0
11 May 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
150
1,328
0
10 Mar 2019
Simplifying Graph Convolutional Networks
Simplifying Graph Convolutional Networks
Felix Wu
Tianyi Zhang
Amauri Souza
Christopher Fifty
Tao Yu
Kilian Q. Weinberger
GNN
244
3,179
0
19 Feb 2019
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
222
1,691
0
14 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,681
0
01 Oct 2018
Generalizing to Unseen Domains via Adversarial Data Augmentation
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi
Hongseok Namkoong
Ozan Sener
John C. Duchi
Vittorio Murino
Silvio Savarese
OOD
119
784
0
30 May 2018
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
133
1,774
0
24 May 2018
Robust Optimization over Multiple Domains
Robust Optimization over Multiple Domains
Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
OOD
74
71
0
19 May 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
352
1,369
0
12 Feb 2018
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
509
15,300
0
07 Jun 2017
Concrete Dropout
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDLUQCV
179
593
0
22 May 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
344
5,372
0
03 Nov 2016
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
122
973
0
06 Jan 2015
1