Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.10112
Cited By
Causal Discovery from Temporal Data: An Overview and New Perspectives
17 March 2023
Chang Gong
Di Yao
Chuzhe Zhang
Wenbin Li
Jingping Bi
AI4TS
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal Discovery from Temporal Data: An Overview and New Perspectives"
48 / 48 papers shown
Title
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Albert Wilcox
Mohamed Ghanem
Masoud Moghani
Pierre Barroso
Benjamin Joffe
Animesh Garg
113
0
0
06 Mar 2025
Causally-informed Deep Learning towards Explainable and Generalizable Outcomes Prediction in Critical Care
Yuxiao Cheng
Xinxin Song
Ziqian Wang
Qin Zhong
Kunlun He
J. Suo
OOD
CML
107
0
0
04 Feb 2025
Cardinality-Regularized Hawkes-Granger Model
T. Idé
Georgios Kollias
Dzung Phan
Naoki Abe
85
12
0
28 Jan 2025
MotifDisco: Motif Causal Discovery For Time Series Motifs
Josephine Lamp
M. Derdzinski
Christopher Hannemann
Sam Hatfield
Joost van der Linden
AI4TS
CML
BDL
105
0
0
23 Sep 2024
GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing
Chengqing Yu
Fei Wang
Zezhi Shao
Tangwen Qian
Zhao Zhang
Wei Wei
Yongjun Xu
AI4CE
85
19
0
18 May 2024
Root Cause Analysis In Microservice Using Neural Granger Causal Discovery
Cheng-Ming Lin
Ching Chang
Wei-Yao Wang
Kuang-Da Wang
Wenjie Peng
AI4TS
78
13
0
02 Feb 2024
Causal discovery for time series with constraint-based model and PMIME measure
A. Arsac
Aurore Lomet
Jean-Philippe Poli
CML
AI4TS
13
1
0
31 May 2023
Causal Reasoning and Large Language Models: Opening a New Frontier for Causality
Emre Kıcıman
Robert Osazuwa Ness
Amit Sharma
Chenhao Tan
LRM
ELM
65
269
0
28 Apr 2023
CIPCaD-Bench: Continuous Industrial Process datasets for benchmarking Causal Discovery methods
Giovanni Menegozzo
Diego DallÁlba
Paolo Fiorini
64
7
0
02 Aug 2022
Interpretable Gait Recognition by Granger Causality
Michal Balazia
Katerina Hlaváčková-Schindler
Petr Sojka
Claudia Plant
CVBM
29
1
0
14 Jun 2022
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
45
187
0
23 Sep 2021
Active Learning of Continuous-time Bayesian Networks through Interventions
Dominik Linzner
Heinz Koeppl
CML
26
2
0
31 May 2021
THP: Topological Hawkes Processes for Learning Causal Structure on Event Sequences
Ruichu Cai
Siyu Wu
Jie Qiao
Zhifeng Hao
Keli Zhang
Xi Zhang
63
22
0
23 May 2021
Granger Causality: A Review and Recent Advances
Ali Shojaie
E. Fox
CML
AI4TS
51
265
0
05 May 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
66
297
0
03 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
48
138
0
26 Feb 2021
Inductive Granger Causal Modeling for Multivariate Time Series
Yunfei Chu
Xiaowei Wang
Jianxin Ma
Kunyang Jia
Jingren Zhou
Hongxia Yang
CML
AI4TS
29
11
0
10 Feb 2021
Causal Inference from Slowly Varying Nonstationary Processes
Kang Du
Yu Xiang
80
6
0
23 Dec 2020
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
62
38
0
23 Nov 2020
High-recall causal discovery for autocorrelated time series with latent confounders
Andreas Gerhardus
J. Runge
CML
AI4TS
34
101
0
03 Jul 2020
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Löwe
David Madras
R. Zemel
Max Welling
CML
BDL
AI4TS
77
131
0
18 Jun 2020
Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets
Jakob Runge
50
187
0
07 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
205
315
0
07 Feb 2020
CLEVRER: CoLlision Events for Video REpresentation and Reasoning
Kexin Yi
Yuta Saito
Yunzhu Li
Pushmeet Kohli
Jiajun Wu
Antonio Torralba
J. Tenenbaum
NAI
76
465
0
03 Oct 2019
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric Xing
CML
140
257
0
29 Sep 2019
Attention is not not Explanation
Sarah Wiegreffe
Yuval Pinter
XAI
AAML
FAtt
48
901
0
13 Aug 2019
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
45
270
0
05 Jun 2019
Exploring Interpretable LSTM Neural Networks over Multi-Variable Data
Tian Guo
Tao R. Lin
Nino Antulov-Fantulin
AI4TS
47
155
0
28 May 2019
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models
Erdun Gao
Kun Zhang
Biwei Huang
Clark Glymour
CML
AI4TS
51
64
0
26 May 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
64
481
0
22 Apr 2019
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
Erdun Gao
Kun Zhang
Jiji Zhang
Joseph Ramsey
Ruben Sanchez-Romero
Clark Glymour
Bernhard Schölkopf
49
220
0
05 Mar 2019
Attention is not Explanation
Sarthak Jain
Byron C. Wallace
FAtt
87
1,307
0
26 Feb 2019
Deep learning for time series classification: a review
Hassan Ismail Fawaz
Germain Forestier
J. Weber
L. Idoumghar
Pierre-Alain Muller
AI4TS
AI4CE
244
2,668
0
12 Sep 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
105
938
0
20 Jun 2018
Causal Consistency of Structural Equation Models
Paul Kishan Rubenstein
S. Weichwald
Stephan Bongers
Joris M. Mooij
Dominik Janzing
Moritz Grosse-Wentrup
Bernhard Schölkopf
CML
64
124
0
04 Jul 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
122
5,920
0
04 Mar 2017
From Deterministic ODEs to Dynamic Structural Causal Models
Paul Kishan Rubenstein
Stephan Bongers
Bernhard Schölkopf
Joris M. Mooij
58
54
0
29 Aug 2016
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
96
961
0
06 Jan 2015
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components
Philipp Geiger
Kun Zhang
Biwei Huang
Dominik Janzing
Bernhard Schölkopf
CML
LLMSV
33
79
0
14 Nov 2014
Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality
Vikas Sindhwani
H. Q. Minh
A. Lozano
92
59
0
09 Aug 2014
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
84
563
0
26 Sep 2013
Causal interpretation of stochastic differential equations
Alexander Sokol
N. Hansen
CML
98
50
0
31 Mar 2013
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
98
3,980
0
27 Feb 2013
Learning Equivalence Classes of Bayesian Networks Structures
D. M. Chickering
75
831
0
13 Feb 2013
The Bayesian Structural EM Algorithm
N. Friedman
BDL
TPM
145
714
0
30 Jan 2013
Learning Continuous Time Bayesian Networks
Uri Nodelman
C. Shelton
D. Koller
127
145
0
19 Oct 2012
Learning Why Things Change: The Difference-Based Causality Learner
M. Voortman
D. Dash
Marek J Druzdzel
CML
73
41
0
15 Mar 2012
Kernel-based Conditional Independence Test and Application in Causal Discovery
Kun Zhang
J. Peters
Dominik Janzing
Bernhard Schölkopf
BDL
CML
82
618
0
14 Feb 2012
1