ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12870
  4. Cited By
ActMAD: Activation Matching to Align Distributions for
  Test-Time-Training

ActMAD: Activation Matching to Align Distributions for Test-Time-Training

23 November 2022
M. Jehanzeb Mirza
Pol Jané Soneira
W. Lin
Mateusz Koziñski
Horst Possegger
Horst Bischof
    VLM
    TTA
ArXivPDFHTML

Papers citing "ActMAD: Activation Matching to Align Distributions for Test-Time-Training"

43 / 43 papers shown
Title
Structural Alignment Improves Graph Test-Time Adaptation
Structural Alignment Improves Graph Test-Time Adaptation
Hans Hao-Hsun Hsu
Shikun Liu
Han Zhao
Pan Li
OOD
TTA
240
0
0
25 Feb 2025
Event Stream-based Visual Object Tracking: HDETrack V2 and A High-Definition Benchmark
Event Stream-based Visual Object Tracking: HDETrack V2 and A High-Definition Benchmark
Shiao Wang
Xinyu Wang
Chao wang
Liye Jin
Lin Zhu
Bo Jiang
Yonghong Tian
Jin Tang
109
0
0
08 Feb 2025
IT$^3$: Idempotent Test-Time Training
IT3^33: Idempotent Test-Time Training
Nikita Durasov
Assaf Shocher
Doruk Öner
Gal Chechik
Alexei A. Efros
Pascal Fua
OOD
VLM
84
1
0
05 Oct 2024
PointSAM: Pointly-Supervised Segment Anything Model for Remote Sensing Images
PointSAM: Pointly-Supervised Segment Anything Model for Remote Sensing Images
Nanqing Liu
Xun Xu
Yongyi Su
Haojie Zhang
Heng-Chao Li
VLM
91
15
0
20 Sep 2024
Test-Time Training with Masked Autoencoders
Test-Time Training with Masked Autoencoders
Yossi Gandelsman
Yu Sun
Xinlei Chen
Alexei A. Efros
OOD
91
171
0
15 Sep 2022
Robustifying Vision Transformer without Retraining from Scratch by
  Test-Time Class-Conditional Feature Alignment
Robustifying Vision Transformer without Retraining from Scratch by Test-Time Class-Conditional Feature Alignment
Takeshi Kojima
Yutaka Matsuo
Yusuke Iwasawa
73
28
0
28 Jun 2022
An Efficient Domain-Incremental Learning Approach to Drive in All
  Weather Conditions
An Efficient Domain-Incremental Learning Approach to Drive in All Weather Conditions
M. Jehanzeb Mirza
Marc Masana
Horst Possegger
Horst Bischof
CLL
51
82
0
19 Apr 2022
Towards Online Domain Adaptive Object Detection
Towards Online Domain Adaptive Object Detection
VS Vibashan
Poojan Oza
Vishal M. Patel
54
44
0
11 Apr 2022
Efficient Test-Time Model Adaptation without Forgetting
Efficient Test-Time Model Adaptation without Forgetting
Shuaicheng Niu
Jiaxiang Wu
Yifan Zhang
Yaofo Chen
S. Zheng
P. Zhao
Mingkui Tan
OOD
VLM
TTA
73
341
0
06 Apr 2022
Continual Test-Time Domain Adaptation
Continual Test-Time Domain Adaptation
Qin Wang
Olga Fink
Luc Van Gool
Dengxin Dai
OOD
TTA
103
422
0
25 Mar 2022
Interactron: Embodied Adaptive Object Detection
Interactron: Embodied Adaptive Object Detection
Klemen Kotar
Roozbeh Mottaghi
68
25
0
01 Feb 2022
Parameter-free Online Test-time Adaptation
Parameter-free Online Test-time Adaptation
Malik Boudiaf
Romain Mueller
Ismail Ben Ayed
Luca Bertinetto
TTA
48
150
0
15 Jan 2022
The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by
  Normalization
The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization
M. Jehanzeb Mirza
Jakub Micorek
Horst Possegger
Horst Bischof
67
129
0
01 Dec 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
451
7,739
0
11 Nov 2021
A Fine-Grained Analysis on Distribution Shift
A Fine-Grained Analysis on Distribution Shift
Olivia Wiles
Sven Gowal
Florian Stimberg
Sylvestre-Alvise Rebuffi
Ira Ktena
Krishnamurthy Dvijotham
A. Cemgil
OOD
282
212
0
21 Oct 2021
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature
  Restoration
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature Restoration
Cian Eastwood
I. Mason
Christopher K. I. Williams
Bernhard Schölkopf
TTA
63
51
0
12 Jul 2021
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
92
480
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
328
1,732
0
29 Jun 2020
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
71
360
0
27 Apr 2020
Do We Really Need to Access the Source Data? Source Hypothesis Transfer
  for Unsupervised Domain Adaptation
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
Jian Liang
Dapeng Hu
Jiashi Feng
95
1,241
0
20 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
358
18,739
0
13 Feb 2020
AugMix: A Simple Data Processing Method to Improve Robustness and
  Uncertainty
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OOD
UQCV
100
1,300
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
475
42,393
0
03 Dec 2019
Physics-Based Rendering for Improving Robustness to Rain
Physics-Based Rendering for Improving Robustness to Rain
Shirsendu Sukanta Halder
Jean-François Lalonde
Raoul de Charette
102
110
0
27 Aug 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
170
3,431
0
28 Mar 2019
YOLOv3: An Incremental Improvement
YOLOv3: An Incremental Improvement
Joseph Redmon
Ali Farhadi
ObjD
111
21,442
0
08 Apr 2018
Group Normalization
Group Normalization
Yuxin Wu
Kaiming He
228
3,654
0
22 Mar 2018
Unsupervised Representation Learning by Predicting Image Rotations
Unsupervised Representation Learning by Predicting Image Rotations
Spyros Gidaris
Praveer Singh
N. Komodakis
OOD
SSL
DRL
252
3,288
0
21 Mar 2018
Investigating Human Priors for Playing Video Games
Investigating Human Priors for Playing Video Games
Rachit Dubey
Pulkit Agrawal
Deepak Pathak
Thomas Griffiths
Alexei A. Efros
OffRL
89
146
0
28 Feb 2018
Semantic Foggy Scene Understanding with Synthetic Data
Semantic Foggy Scene Understanding with Synthetic Data
Daniel Gehrig
Dengxin Dai
Luc Van Gool
91
1,101
0
25 Aug 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
126
3,678
0
08 Jun 2017
Central Moment Discrepancy (CMD) for Domain-Invariant Representation
  Learning
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning
Werner Zellinger
Thomas Grubinger
E. Lughofer
T. Natschläger
Susanne Saminger-Platz
OOD
105
574
0
28 Feb 2017
Instance Normalization: The Missing Ingredient for Fast Stylization
Instance Normalization: The Missing Ingredient for Fast Stylization
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
OOD
171
3,707
0
27 Jul 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
407
10,481
0
21 Jul 2016
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
100
3,152
0
06 Jul 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
334
7,984
0
23 May 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,606
0
06 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
499
62,270
0
04 Jun 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
366
9,484
0
28 May 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,289
0
11 Feb 2015
Learning Transferable Features with Deep Adaptation Networks
Learning Transferable Features with Deep Adaptation Networks
Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
OOD
217
5,196
0
10 Feb 2015
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,638
0
01 May 2014
1