Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.05021
Cited By
The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective
10 October 2022
Chi-Heng Lin
Chiraag Kaushik
Eva L. Dyer
Vidya Muthukumar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective"
50 / 52 papers shown
Title
Mitigating multiple descents: A model-agnostic framework for risk monotonization
Pratik V. Patil
Arun K. Kuchibhotla
Yuting Wei
Alessandro Rinaldo
80
8
0
25 May 2022
Masked Siamese Networks for Label-Efficient Learning
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Florian Bordes
Pascal Vincent
Armand Joulin
Michael G. Rabbat
Nicolas Ballas
SSL
91
320
0
14 Apr 2022
Data Augmentation as Feature Manipulation
Ruoqi Shen
Sébastien Bubeck
Suriya Gunasekar
MLT
40
16
0
03 Mar 2022
Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation
Yutong Dai
Brian L. Price
He Zhang
Chunhua Shen
77
29
0
18 Jan 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
454
7,739
0
11 Nov 2021
Harmless interpolation in regression and classification with structured features
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
135
11
0
09 Nov 2021
Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity
Ran Liu
Mehdi Azabou
M. Dabagia
Chi-Heng Lin
M. G. Azar
Keith B. Hengen
Michal Valko
Eva L. Dyer
OCL
SSL
DRL
31
36
0
03 Nov 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
77
72
0
06 Sep 2021
Comparing Classes of Estimators: When does Gradient Descent Beat Ridge Regression in Linear Models?
Dominic Richards
Yan Sun
Patrick Rebeschini
35
3
0
26 Aug 2021
A Survey of Data Augmentation Approaches for NLP
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
98
823
0
07 May 2021
Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures
Yuan Cao
Quanquan Gu
M. Belkin
40
52
0
28 Apr 2021
A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
Jianlong Yuan
Yifan Liu
Chunhua Shen
Zhibin Wang
Hao Li
45
112
0
15 Apr 2021
How rotational invariance of common kernels prevents generalization in high dimensions
Konstantin Donhauser
Mingqi Wu
Fanny Yang
71
24
0
09 Apr 2021
Benign Overfitting of Constant-Stepsize SGD for Linear Regression
Difan Zou
Jingfeng Wu
Vladimir Braverman
Quanquan Gu
Sham Kakade
44
63
0
23 Mar 2021
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Jure Zbontar
Li Jing
Ishan Misra
Yann LeCun
Stéphane Deny
SSL
300
2,344
0
04 Mar 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
94
90
0
25 Feb 2021
Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction
Mehdi Azabou
M. G. Azar
Ran Liu
Chi-Heng Lin
Erik C. Johnson
...
Lindsey Kitchell
Keith B. Hengen
William R. Gray Roncal
Michal Valko
Eva L. Dyer
AI4TS
63
57
0
19 Feb 2021
Negative Data Augmentation
Abhishek Sinha
Kumar Ayush
Jiaming Song
Burak Uzkent
Hongxia Jin
Stefano Ermon
72
74
0
09 Feb 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
120
372
0
17 Dec 2020
Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization
Ke Wang
Christos Thrampoulidis
57
28
0
18 Nov 2020
How Data Augmentation affects Optimization for Linear Regression
Boris Hanin
Yi Sun
60
16
0
21 Oct 2020
Benign overfitting in ridge regression
Alexander Tsigler
Peter L. Bartlett
66
167
0
29 Sep 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
363
6,797
0
13 Jun 2020
Evaluation of Neural Architectures Trained with Square Loss vs Cross-Entropy in Classification Tasks
Like Hui
M. Belkin
UQCV
AAML
VLM
48
171
0
12 Jun 2020
On the Optimal Weighted
ℓ
2
\ell_2
ℓ
2
Regularization in Overparameterized Linear Regression
Denny Wu
Ji Xu
65
122
0
10 Jun 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
81
151
0
16 May 2020
On the Generalization Effects of Linear Transformations in Data Augmentation
Sen Wu
Hongyang R. Zhang
Gregory Valiant
Christopher Ré
54
77
0
02 May 2020
Finite-sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime
Niladri S. Chatterji
Philip M. Long
41
108
0
25 Apr 2020
Optimal Regularization Can Mitigate Double Descent
Preetum Nakkiran
Prayaag Venkat
Sham Kakade
Tengyu Ma
81
133
0
04 Mar 2020
Time Series Data Augmentation for Deep Learning: A Survey
Qingsong Wen
Liang Sun
Fan Yang
Xiaomin Song
Jing Gao
Xue Wang
Huan Xu
AI4TS
58
642
0
27 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
358
18,752
0
13 Feb 2020
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
82
146
0
13 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
62
132
0
03 Nov 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
74
776
0
26 Jun 2019
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang
Zuowen Wang
C. Heinze-Deml
100
42
0
26 Jun 2019
Harmless interpolation of noisy data in regression
Vidya Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
A. Sahai
74
202
0
21 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
186
743
0
19 Mar 2019
Two models of double descent for weak features
M. Belkin
Daniel J. Hsu
Ji Xu
90
374
0
18 Mar 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
227
1,647
0
28 Dec 2018
Deep Knockoffs
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
65
140
0
16 Nov 2018
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
52
67
0
26 Jun 2018
Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization
D. Kobak
Jonathan Lomond
Benoit Sanchez
52
89
0
28 May 2018
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
100
193
0
16 Mar 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
278
9,760
0
25 Oct 2017
Dropout as a Low-Rank Regularizer for Matrix Factorization
Jacopo Cavazza
Pietro Morerio
B. Haeffele
Connor Lane
Vittorio Murino
René Vidal
106
42
0
13 Oct 2017
Learning to Compose Domain-Specific Transformations for Data Augmentation
Alexander J. Ratner
Henry R. Ehrenberg
Zeshan Hussain
Jared A. Dunnmon
Christopher Ré
70
349
0
06 Sep 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
109
3,764
0
15 Aug 2017
Local Group Invariant Representations via Orbit Embeddings
Anant Raj
Abhishek Kumar
Youssef Mroueh
Tom Fletcher
Bernhard Schölkopf
48
38
0
06 Dec 2016
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
167
1,934
0
24 Feb 2016
Dropout as data augmentation
Xavier Bouthillier
K. Konda
Pascal Vincent
Roland Memisevic
73
134
0
29 Jun 2015
1
2
Next