Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.02984
Cited By
The Lie Derivative for Measuring Learned Equivariance
6 October 2022
Nate Gruver
Marc Finzi
Micah Goldblum
A. Wilson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Lie Derivative for Measuring Learned Equivariance"
41 / 41 papers shown
Title
Learning (Approximately) Equivariant Networks via Constrained Optimization
Andrei Manolache
Luiz F.O. Chamon
Mathias Niepert
61
0
0
19 May 2025
Group Downsampling with Equivariant Anti-aliasing
Md Ashiqur Rahman
Raymond A. Yeh
86
1
0
24 Apr 2025
On the Ability of Deep Networks to Learn Symmetries from Data: A Neural Kernel Theory
Andrea Perin
Stéphane Deny
110
2
0
16 Dec 2024
Learning Infinitesimal Generators of Continuous Symmetries from Data
Gyeonghoon Ko
Hyunsu Kim
Juho Lee
50
4
0
29 Oct 2024
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
57
2
0
23 Oct 2024
Affine steerers for structured keypoint description
Georg Bökman
Johan Edstedt
Michael Felsberg
Fredrik Kahl
LLMSV
44
2
0
26 Aug 2024
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
47
5
0
23 Aug 2024
Stability Analysis of Equivariant Convolutional Representations Through The Lens of Equivariant Multi-layered CKNs
Soutrik Roy Chowdhury
61
0
0
08 Aug 2024
Structure-based drug design by denoising voxel grids
Pedro H. O. Pinheiro
Arian R. Jamasb
Omar Mahmood
Vishnu Sresht
Saeed Saremi
DiffM
44
8
0
07 May 2024
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
Nate Gruver
Anuroop Sriram
Andrea Madotto
A. Wilson
C. L. Zitnick
Zachary W. Ulissi
35
61
0
06 Feb 2024
SE(3)-Equivariant and Noise-Invariant 3D Rigid Motion Tracking in Brain MRI
Benjamin Billot
Neel Dey
Daniel Moyer
M. Hoffmann
Esra Abaci Turk
B. Gagoski
Ellen Grant
Polina Golland
3DPC
62
6
0
21 Dec 2023
Steerers: A framework for rotation equivariant keypoint descriptors
Georg Bökman
Johan Edstedt
Michael Felsberg
Fredrik Kahl
LLMSV
42
10
0
04 Dec 2023
Swallowing the Bitter Pill: Simplified Scalable Conformer Generation
Yuyang Wang
Ahmed A. A. Elhag
Navdeep Jaitly
J. Susskind
Miguel Angel Bautista
DiffM
36
21
0
27 Nov 2023
Almost Equivariance via Lie Algebra Convolutions
Daniel McNeela
34
7
0
19 Oct 2023
Large Language Models Are Zero-Shot Time Series Forecasters
Nate Gruver
Marc Finzi
Shikai Qiu
Andrew Gordon Wilson
AI4TS
51
327
0
11 Oct 2023
Equivariant Adaptation of Large Pretrained Models
Arnab Kumar Mondal
Siba Smarak Panigrahi
Sekouba Kaba
Sai Rajeswar
Siamak Ravanbakhsh
58
28
0
02 Oct 2023
3D molecule generation by denoising voxel grids
Pedro H. O. Pinheiro
Joshua Rackers
J. Kleinhenz
Michael R. Maser
Omar Mahmood
Andrew Watkins
Stephen Ra
Vishnu Sresht
Saeed Saremi
DiffM
43
22
0
13 Jun 2023
Reviving Shift Equivariance in Vision Transformers
Peijian Ding
Davit Soselia
Thomas Armstrong
Jiahao Su
Furong Huang
48
7
0
13 Jun 2023
Representation Equivalent Neural Operators: a Framework for Alias-free Operator Learning
Francesca Bartolucci
Emmanuel de Bezenac
Bogdan Raonić
Roberto Molinaro
Siddhartha Mishra
Rima Alaifari
62
28
0
31 May 2023
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
34
6
0
26 May 2023
E
(
3
)
×
S
O
(
3
)
E(3) \times SO(3)
E
(
3
)
×
SO
(
3
)
-Equivariant Networks for Spherical Deconvolution in Diffusion MRI
Axel Elaldi
Guido Gerig
Neel Dey
MedIm
48
3
0
12 Apr 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
55
39
0
11 Apr 2023
Oracle-Preserving Latent Flows
Alexander Roman
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
DRL
70
5
0
02 Feb 2023
Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics
Marloes Arts
Victor Garcia Satorras
Chin-Wei Huang
Daniel Zuegner
Marco Federici
C. Clementi
Frank Noé
Robert Pinsler
Rianne van den Berg
DiffM
39
87
0
01 Feb 2023
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
AI4CE
56
22
0
13 Jan 2023
LieGG: Studying Learned Lie Group Generators
A. Moskalev
A. Sepliarskaia
Ivan Sosnovik
A. Smeulders
51
25
0
09 Oct 2022
Patches Are All You Need?
Asher Trockman
J. Zico Kolter
ViT
230
403
0
24 Jan 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
327
7,544
0
11 Nov 2021
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
212
488
0
01 Oct 2021
Impact of Aliasing on Generalization in Deep Convolutional Networks
C. N. Vasconcelos
Hugo Larochelle
Vincent Dumoulin
Rob Romijnders
Nicolas Le Roux
Ross Goroshin
OOD
88
34
0
07 Aug 2021
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
315
2,623
0
04 May 2021
Transformer in Transformer
Kai Han
An Xiao
Enhua Wu
Jianyuan Guo
Chunjing Xu
Yunhe Wang
ViT
323
1,536
0
27 Feb 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
226
513
0
11 Feb 2021
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan Ding
Xinming Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian Sun
136
1,558
0
11 Jan 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
259
1,253
0
08 Jan 2021
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
M. Rath
Alexandru Paul Condurache
ViT
AI4CE
45
9
0
30 Jun 2020
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
224
1,403
0
04 Dec 2018
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
213
243
0
14 Jun 2018
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
350
10,253
0
16 Nov 2016
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
361
14,429
0
07 Oct 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
368
36,493
0
25 Aug 2016
1