Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.10289
Cited By
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
21 July 2022
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks"
42 / 42 papers shown
Title
Dual-Balancing for Physics-Informed Neural Networks
Chenhong Zhou
Jie Chen
Zaifeng Yang
Ching Eng Png
PINN
AI4CE
30
0
0
21 May 2025
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
55
0
0
02 May 2025
PIED: Physics-Informed Experimental Design for Inverse Problems
Apivich Hemachandra
Gregory Kang Ruey Lau
Szu Hui Ng
Bryan Kian Hsiang Low
PINN
48
0
0
10 Mar 2025
Physics- and data-driven Active Learning of neural network representations for free energy functions of materials from statistical mechanics
Jamie Holber
Krishna Garikipati
AI4CE
43
0
0
25 Feb 2025
Learning Discontinuous Galerkin Solutions to Elliptic Problems via Small Linear Convolutional Neural Networks
A. Celaya
Yimo Wang
David T. Fuentes
Beatrice Riviere
41
0
0
12 Feb 2025
The Finite Element Neural Network Method: One Dimensional Study
Mohammed Abda
Elsa Piollet
Christopher Blake
Frédérick P. Gosselin
71
0
0
21 Jan 2025
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
32
2
0
27 Sep 2024
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
57
4
0
02 Aug 2024
Improved physics-informed neural network in mitigating gradient related failures
Pancheng Niu
Yongming Chen
Jun Guo
Yuqian Zhou
Minfu Feng
Yanchao Shi
PINN
AI4CE
26
0
0
28 Jul 2024
An Advanced Physics-Informed Neural Operator for Comprehensive Design Optimization of Highly-Nonlinear Systems: An Aerospace Composites Processing Case Study
Milad Ramezankhani
A. Deodhar
Rishi Parekh
Dagnachew Birru
AI4CE
50
3
0
20 Jun 2024
Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN)
Chenhao Si
Ming Yan
AI4CE
PINN
41
3
0
05 Jun 2024
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan V. Oseledets
33
1
0
04 Jun 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
43
1
0
09 May 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Accurate adaptive deep learning method for solving elliptic problems
Jingyong Ying
Yaqi Xie
Jiao Li
Hongqiao Wang
37
1
0
29 Apr 2024
Investigating Guiding Information for Adaptive Collocation Point Sampling in PINNs
Jose Florido
He-Nan Wang
Amirul Khan
P. Jimack
31
2
0
18 Apr 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
27
2
0
04 Mar 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
26
17
0
05 Jan 2024
Adaptive importance sampling for Deep Ritz
Xiaoliang Wan
Tao Zhou
Yuancheng Zhou
29
2
0
26 Oct 2023
Adversarial Training for Physics-Informed Neural Networks
Yao Li
Shengzhu Shi
Zhichang Guo
Boying Wu
AAML
PINN
27
0
0
18 Oct 2023
Physics-Informed Neural Networks for an optimal counterdiabatic quantum computation
Antonio Ferrer-Sánchez
Carlos Flores-Garrigós
C. Hernani-Morales
José J. Orquín-Marqués
N. N. Hegade
Alejandro Gomez Cadavid
Iraitz Montalban
Enrique Solano
Yolanda Vives-Gilabert
J. D. Martín-Guerrero
32
2
0
08 Sep 2023
Auxiliary-Tasks Learning for Physics-Informed Neural Network-Based Partial Differential Equations Solving
Junjun Yan
Xinhai Chen
Zhichao Wang
Enqiang Zhou
Jie Liu
PINN
AI4CE
29
1
0
12 Jul 2023
Residual-based attention and connection to information bottleneck theory in PINNs
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikos Stergiopulos
George Karniadakis
25
20
0
01 Jul 2023
Efficient Training of Physics-Informed Neural Networks with Direct Grid Refinement Algorithm
Shikhar Nilabh
F. Grandia
39
1
0
14 Jun 2023
PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Systems
S. Mao
R. Dong
Lu Lu
K. M. Yi
Sizhuang He
P. Perdikaris
14
16
0
18 May 2023
GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs
Yuling Jiao
Dingwei Li
Xiliang Lu
J. Yang
Cheng Yuan
34
9
0
28 Mar 2023
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
36
18
0
13 Mar 2023
Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
Francesco Di Fiore
Michela Nardelli
L. Mainini
37
22
0
02 Mar 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
13
4
0
25 Feb 2023
Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation
Zhi-Hao Gao
Tao Tang
Liang Yan
Tao Zhou
37
18
0
03 Feb 2023
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
23
6
0
28 Nov 2022
Physics-informed neural networks for gravity currents reconstruction from limited data
Mickaël G. Delcey
Y. Cheny
S. Richter
PINN
AI4CE
19
11
0
03 Nov 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
18
77
0
01 Oct 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
31
6
0
07 Sep 2022
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations
Junho Choi
N. Kim
Youngjoon Hong
AI4CE
24
0
0
21 Jul 2022
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
34
23
0
11 Apr 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Rafael Bischof
M. Kraus
PINN
AI4CE
33
92
0
19 Oct 2021
Meta-learning PINN loss functions
Apostolos F. Psaros
Kenji Kawaguchi
George Karniadakis
PINN
43
97
0
12 Jul 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
23
39
0
03 May 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
71
222
0
26 Apr 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
274
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
494
0
09 Feb 2021
1