ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.12508
71
0

The Finite Element Neural Network Method: One Dimensional Study

21 January 2025
Mohammed Abda
Elsa Piollet
Christopher Blake
Frédérick P. Gosselin
ArXivPDFHTML
Abstract

The potential of neural networks (NN) in engineering is rooted in their capacity to understand intricate patterns and complex systems, leveraging their universal nonlinear approximation capabilities and high expressivity. Meanwhile, conventional numerical methods, backed by years of meticulous refinement, continue to be the standard for accuracy and dependability. Bridging these paradigms, this research introduces the finite element neural network method (FENNM) within the framework of the Petrov-Galerkin method using convolution operations to approximate the weighted residual of the differential equations. The NN generates the global trial solution, while the test functions belong to the Lagrange test function space. FENNM introduces several key advantages. Notably, the weak-form of the differential equations introduces flux terms that contribute information to the loss function compared to VPINN, hp-VPINN, and cv-PINN. This enables the integration of forcing terms and natural boundary conditions into the loss function similar to conventional finite element method (FEM) solvers, facilitating its optimization, and extending its applicability to more complex problems, which will ease industrial adoption. This study will elaborate on the derivation of FENNM, highlighting its similarities with FEM. Additionally, it will provide insights into optimal utilization strategies and user guidelines to ensure cost-efficiency. Finally, the study illustrates the robustness and accuracy of FENNM by presenting multiple numerical case studies and applying adaptive mesh refinement techniques.

View on arXiv
Comments on this paper