ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.07127
31
18

Improving physics-informed neural networks with meta-learned optimization

13 March 2023
Alexander Bihlo
    PINN
ArXivPDFHTML
Abstract

We show that the error achievable using physics-informed neural networks for solving systems of differential equations can be substantially reduced when these networks are trained using meta-learned optimization methods rather than to using fixed, hand-crafted optimizers as traditionally done. We choose a learnable optimization method based on a shallow multi-layer perceptron that is meta-trained for specific classes of differential equations. We illustrate meta-trained optimizers for several equations of practical relevance in mathematical physics, including the linear advection equation, Poisson's equation, the Korteweg--de Vries equation and Burgers' equation. We also illustrate that meta-learned optimizers exhibit transfer learning abilities, in that a meta-trained optimizer on one differential equation can also be successfully deployed on another differential equation.

View on arXiv
Comments on this paper