ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09715
19
11

Physics-informed neural networks for gravity currents reconstruction from limited data

3 November 2022
Mickaël G. Delcey
Y. Cheny
S. Richter
    PINN
    AI4CE
ArXivPDFHTML
Abstract

The present work investigates the use of physics-informed neural networks (PINNs) for the 3D reconstruction of unsteady gravity currents from limited data. In the PINN context, the flow fields are reconstructed by training a neural network whose objective function penalizes the mismatch between the network predictions and the observed data and embeds the underlying equations using automatic differentiation. This study relies on a high-fidelity numerical experiment of the canonical lock-exchange configuration. This allows us to benchmark quantitatively the PINNs reconstruction capabilities on several training databases that mimic state-of-the-art experimental measurement techniques for density and velocity. Notably, spatially averaged density measurements by light attenuation technique (LAT) are employed for the training procedure. An optimal experimental setup for flow reconstruction by PINNs is proposed according to two criteria : the implementation complexity and the accuracy of the inferred fields.

View on arXiv
Comments on this paper