ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.01242
  4. Cited By
Parametric and Multivariate Uncertainty Calibration for Regression and
  Object Detection
v1v2 (latest)

Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection

4 July 2022
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection"

22 / 22 papers shown
Title
$f$-Cal: Calibrated aleatoric uncertainty estimation from neural
  networks for robot perception
fff-Cal: Calibrated aleatoric uncertainty estimation from neural networks for robot perception
Dhaivat Bhatt
Kaustubh Mani
Dishank Bansal
Krishna Murthy Jatavallabhula
Hanju Lee
Liam Paull
UQCV
82
5
0
28 Sep 2021
From Black-box to White-box: Examining Confidence Calibration under
  different Conditions
From Black-box to White-box: Examining Confidence Calibration under different Conditions
Franziska Schwaiger
Maximilian Henne
Fabian Küppers
Felippe Schmoeller da Roza
Karsten Roscher
Anselm Haselhoff
67
10
0
08 Jan 2021
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAMLUQCVEDL
81
226
0
20 Nov 2020
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty
  Quantification
Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification
Youngseog Chung
Willie Neiswanger
I. Char
J. Schneider
UQCV
169
88
0
18 Nov 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
55
48
0
18 Jun 2020
Multivariate Confidence Calibration for Object Detection
Multivariate Confidence Calibration for Object Detection
Fabian Küppers
Jan Kronenberger
Amirhossein Shantia
Anselm Haselhoff
UQCV
31
112
0
28 Apr 2020
Can We Trust You? On Calibration of a Probabilistic Object Detector for
  Autonomous Driving
Can We Trust You? On Calibration of a Probabilistic Object Detector for Autonomous Driving
Di Feng
Lars Rosenbaum
Claudius Glaeser
Fabian Timm
Klaus C. J. Dietmayer
UQCV3DPC
49
39
0
26 Sep 2019
Verified Uncertainty Calibration
Verified Uncertainty Calibration
Ananya Kumar
Percy Liang
Tengyu Ma
167
356
0
23 Sep 2019
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Dan Levi
Liran Gispan
Niv Giladi
Ethan Fetaya
UQCV
82
144
0
28 May 2019
Distribution Calibration for Regression
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
184
111
0
15 May 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDLUQCV
59
119
0
09 Mar 2019
Probabilistic Object Detection: Definition and Evaluation
Probabilistic Object Detection: Definition and Evaluation
David Hall
Feras Dayoub
John Skinner
Haoyang Zhang
Dimity Miller
Peter Corke
G. Carneiro
A. Angelova
Niko Sünderhauf
UQCV
80
110
0
27 Nov 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,100
0
28 Sep 2018
Bounding Box Regression with Uncertainty for Accurate Object Detection
Bounding Box Regression with Uncertainty for Accurate Object Detection
Yihui He
Chenchen Zhu
Jianren Wang
Marios Savvides
Xinming Zhang
ObjD
74
469
0
23 Sep 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDLUQCV
196
633
0
01 Jul 2018
Fast calibrated additive quantile regression
Fast calibrated additive quantile regression
Matteo Fasiolo
S. Wood
Margaux Zaffran
Raphael Nedellec
Y. Goude
42
197
0
11 Jul 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,833
0
14 Jun 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
354
4,709
0
15 Mar 2017
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMatObjD
520
62,294
0
04 Jun 2015
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
75
644
0
07 Nov 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,667
0
01 May 2014
Estimating conditional quantiles with the help of the pinball loss
Estimating conditional quantiles with the help of the pinball loss
Ingo Steinwart
A. Christmann
308
244
0
10 Feb 2011
1