ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01874
  4. Cited By
An Unpooling Layer for Graph Generation
v1v2 (latest)

An Unpooling Layer for Graph Generation

4 June 2022
Yi Guo
Dongmian Zou
Gilad Lerman
ArXiv (abs)PDFHTML

Papers citing "An Unpooling Layer for Graph Generation"

38 / 38 papers shown
Title
Score-based Generative Modeling of Graphs via the System of Stochastic
  Differential Equations
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Jaehyeong Jo
Seul Lee
Sung Ju Hwang
DiffM
83
228
0
05 Feb 2022
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
260
200
0
01 Feb 2021
Deep Graph Generators: A Survey
Deep Graph Generators: A Survey
Faezeh Faez
Yassaman Ommi
M. Baghshah
Hamid R. Rabiee
GNNAI4CE
102
58
0
31 Dec 2020
Molecular graph generation with Graph Neural Networks
Molecular graph generation with Graph Neural Networks
P. Bongini
Monica Bianchini
F. Scarselli
GNN
100
143
0
14 Dec 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei Wang
BDL
134
295
0
17 Jun 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
187
438
0
26 Jan 2020
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
BDL
120
193
0
28 May 2019
Graph U-Nets
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CESSLSSegGNN
132
1,095
0
11 May 2019
Graph Convolutional Networks with EigenPooling
Graph Convolutional Networks with EigenPooling
Yao Ma
Suhang Wang
Charu C. Aggarwal
Jiliang Tang
GNN
185
337
0
30 Apr 2019
Self-Attention Graph Pooling
Self-Attention Graph Pooling
Junhyun Lee
Inyeop Lee
Jaewoo Kang
GNN
186
1,130
0
17 Apr 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE3DV
92
328
0
11 Mar 2019
Graph Neural Networks for Social Recommendation
Graph Neural Networks for Social Recommendation
Wenqi Fan
Yao Ma
Qing Li
Yuan He
Yue Zhao
Jiliang Tang
Dawei Yin
256
1,909
0
19 Feb 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
106
231
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
294
655
0
29 Nov 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
261
7,710
0
01 Oct 2018
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
274
5,407
0
28 Sep 2018
Improving Chemical Autoencoder Latent Space and Molecular De novo
  Generation Diversity with Heteroencoders
Improving Chemical Autoencoder Latent Space and Molecular De novo Generation Diversity with Heteroencoders
E. Bjerrum
Boris Sattarov
BDL
44
149
0
25 Jun 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
322
2,157
0
22 Jun 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
299
905
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNNGAN
179
930
0
30 May 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNNBDL
142
854
0
24 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNNDRLBDLDiffM
83
218
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
365
1,372
0
12 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNNBDL
123
856
0
09 Feb 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
484
20,265
0
30 Oct 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for
  Sequence Generation Models
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
92
525
0
30 May 2017
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on
  Graphs
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs
M. Simonovsky
N. Komodakis
GNN
219
1,232
0
10 Apr 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,500
0
04 Apr 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,568
0
31 Mar 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDLDRL
93
844
0
06 Mar 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
182
2,945
0
07 Oct 2016
Variational Autoencoder for Deep Learning of Images, Labels and Captions
Variational Autoencoder for Deep Learning of Images, Labels and Captions
Yunchen Pu
Zhe Gan
Ricardo Henao
Xin Yuan
Chunyuan Li
Andrew Stevens
Lawrence Carin
BDLCoGe
94
755
0
28 Sep 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
684
29,183
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
371
7,680
0
30 Jun 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GANOOD
309
14,032
0
19 Nov 2015
Convolutional Networks on Graphs for Learning Molecular Fingerprints
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
229
3,356
0
30 Sep 2015
Spectral Networks and Locally Connected Networks on Graphs
Spectral Networks and Locally Connected Networks on Graphs
Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
GNN
240
4,884
0
21 Dec 2013
The Optimal Reward Baseline for Gradient-Based Reinforcement Learning
The Optimal Reward Baseline for Gradient-Based Reinforcement Learning
Lex Weaver
Nigel Tao
124
249
0
10 Jan 2013
1