Convolutional Networks on Graphs for Learning Molecular Fingerprints
D. Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams

Abstract
We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.
View on arXivComments on this paper