ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15784
  4. Cited By
Likelihood-Free Inference with Generative Neural Networks via Scoring
  Rule Minimization

Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization

31 May 2022
Lorenzo Pacchiardi
Ritabrata Dutta
    TPMBDLUQCVGAN
ArXiv (abs)PDFHTML

Papers citing "Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization"

19 / 19 papers shown
Title
Likelihood-Free Variational Autoencoders
Likelihood-Free Variational Autoencoders
Chen Xu
Qiang Wang
Lijun Sun
DiffMDRL
190
0
0
24 Apr 2025
Efficient Training of Neural Stochastic Differential Equations by Matching Finite Dimensional Distributions
Efficient Training of Neural Stochastic Differential Equations by Matching Finite Dimensional Distributions
Jianxin Zhang
Josh Viktorov
Doosan Jung
Emily Pitler
DiffM
213
0
0
04 Oct 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
639
15
0
04 Oct 2023
Bayesian Synthetic Likelihood
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
182
220
0
09 May 2023
Estimating and Evaluating Regression Predictive Uncertainty in Deep
  Object Detectors
Estimating and Evaluating Regression Predictive Uncertainty in Deep Object Detectors
Ali Harakeh
Steven L. Waslander
UQCV
118
41
0
13 Jan 2021
BayesFlow: Learning complex stochastic models with invertible neural
  networks
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
292
197
0
13 Mar 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
223
124
0
10 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
213
1,717
0
05 Dec 2019
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
166
75
0
29 Sep 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
390
332
0
17 May 2019
Approximate Bayesian computation via the energy statistic
Approximate Bayesian computation via the energy statistic
Hien Nguyen
Julyan Arbel
Hongliang Lü
F. Forbes
90
29
0
14 May 2019
On GANs and GMMs
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
181
152
0
31 May 2018
Likelihood-free inference with emulator networks
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
165
128
0
23 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
546
370
0
18 May 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
188
1,501
0
04 Jan 2018
DISCO Nets: DISsimilarity COefficient Networks
DISCO Nets: DISsimilarity COefficient Networks
Diane Bouchacourt
P. Mudigonda
Sebastian Nowozin
BDLUDDRL
150
59
0
08 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
164
1,659
0
02 Jun 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
183
158
0
20 May 2016
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
458
16,922
0
20 Dec 2013
1