ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.09735
  4. Cited By
Foundation Posteriors for Approximate Probabilistic Inference

Foundation Posteriors for Approximate Probabilistic Inference

19 May 2022
Mike Wu
Noah D. Goodman
    UQCV
ArXivPDFHTML

Papers citing "Foundation Posteriors for Approximate Probabilistic Inference"

40 / 40 papers shown
Title
Bernstein Flows for Flexible Posteriors in Variational Bayes
Bernstein Flows for Flexible Posteriors in Variational Bayes
Oliver Durr
Stephan Hörling
Daniel Dold
Ivonne Kovylov
Beate Sick
BDL
68
4
0
11 Feb 2022
data2vec: A General Framework for Self-supervised Learning in Speech,
  Vision and Language
data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language
Alexei Baevski
Wei-Ning Hsu
Qiantong Xu
Arun Babu
Jiatao Gu
Michael Auli
SSL
VLM
ViT
89
854
0
07 Feb 2022
Modeling Item Response Theory with Stochastic Variational Inference
Modeling Item Response Theory with Stochastic Variational Inference
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
CML
39
5
0
26 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
70
40
0
09 Aug 2021
Meta-Learning an Inference Algorithm for Probabilistic Programs
Meta-Learning an Inference Algorithm for Probabilistic Programs
Gwonsoo Che
Hongseok Yang
TPM
28
1
0
01 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
828
29,341
0
26 Feb 2021
Transformer Interpretability Beyond Attention Visualization
Transformer Interpretability Beyond Attention Visualization
Hila Chefer
Shir Gur
Lior Wolf
128
664
0
17 Dec 2020
Meta-Learning with Shared Amortized Variational Inference
Meta-Learning with Shared Amortized Variational Inference
E. Iakovleva
Jakob Verbeek
Alahari Karteek
OOD
FedML
BDL
42
22
0
27 Aug 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
56
62
0
22 Jun 2020
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
  Representations
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
Alexei Baevski
Henry Zhou
Abdel-rahman Mohamed
Michael Auli
SSL
250
5,774
0
20 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
708
41,894
0
28 May 2020
Quantifying Attention Flow in Transformers
Quantifying Attention Flow in Transformers
Samira Abnar
Willem H. Zuidema
134
794
0
02 May 2020
CodeBERT: A Pre-Trained Model for Programming and Natural Languages
CodeBERT: A Pre-Trained Model for Programming and Natural Languages
Zhangyin Feng
Daya Guo
Duyu Tang
Nan Duan
Xiaocheng Feng
...
Linjun Shou
Bing Qin
Ting Liu
Daxin Jiang
Ming Zhou
151
2,613
0
19 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
341
18,721
0
13 Feb 2020
Variational Item Response Theory: Fast, Accurate, and Expressive
Variational Item Response Theory: Fast, Accurate, and Expressive
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
OffRL
77
55
0
01 Feb 2020
RoBERTa: A Robustly Optimized BERT Pretraining Approach
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
M. Lewis
Luke Zettlemoyer
Veselin Stoyanov
AIMat
543
24,422
0
26 Jul 2019
Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy
  Lifting, the Rest Can Be Pruned
Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned
Elena Voita
David Talbot
F. Moiseev
Rico Sennrich
Ivan Titov
106
1,138
0
23 May 2019
wav2vec: Unsupervised Pre-training for Speech Recognition
wav2vec: Unsupervised Pre-training for Speech Recognition
Steffen Schneider
Alexei Baevski
R. Collobert
Michael Auli
SSL
68
418
0
11 Apr 2019
Meta-Amortized Variational Inference and Learning
Meta-Amortized Variational Inference and Learning
Mike Wu
Kristy Choi
Noah D. Goodman
Stefano Ermon
OOD
VLM
BDL
DRL
75
35
0
05 Feb 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
153
1,053
0
18 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.7K
94,729
0
11 Oct 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
68
198
0
27 Sep 2018
Meta-Learning Probabilistic Inference For Prediction
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard Turner
BDL
110
264
0
24 May 2018
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Mike Wu
Noah D. Goodman
DRL
70
380
0
14 Feb 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
658
131,414
0
12 Jun 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
209
282
0
21 Mar 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
173
2,529
0
02 Nov 2016
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
185
143
0
31 Oct 2016
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
50
301
0
31 Oct 2016
Layer-wise Relevance Propagation for Neural Networks with Local
  Renormalization Layers
Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
Wojciech Samek
FAtt
72
461
0
04 Apr 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
104
717
0
02 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
254
4,787
0
04 Jan 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,814
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Generalized Product of Experts for Automatic and Principled Fusion of
  Gaussian Process Predictions
Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions
Yanshuai Cao
David J. Fleet
41
186
0
28 Oct 2014
Venture: a higher-order probabilistic programming platform with
  programmable inference
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
61
255
0
01 Apr 2014
Neural Variational Inference and Learning in Belief Networks
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
169
729
0
31 Jan 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
129
1,166
0
31 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
250
2,621
0
29 Jun 2012
Church: a language for generative models
Church: a language for generative models
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
J. Tenenbaum
100
817
0
13 Jun 2012
1