ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.09308
  4. Cited By
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement

A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement

20 April 2022
Matias Valdenegro-Toro
Daniel Saromo
    UD
    PER
    BDL
    UQCV
ArXivPDFHTML

Papers citing "A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement"

42 / 42 papers shown
Title
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
Christopher Bülte
Yusuf Sale
Timo Löhr
Paul Hofman
Gitta Kutyniok
Eyke Hüllermeier
UD
65
0
0
25 Apr 2025
Efficient Process Reward Model Training via Active Learning
Efficient Process Reward Model Training via Active Learning
Keyu Duan
Zichen Liu
Xin Mao
Tianyu Pang
Changyu Chen
Qiguang Chen
Michael Shieh
Longxu Dou
LRM
25
1
0
14 Apr 2025
Explainability of AI Uncertainty: Application to Multiple Sclerosis Lesion Segmentation on MRI
Explainability of AI Uncertainty: Application to Multiple Sclerosis Lesion Segmentation on MRI
N. Molchanova
P. M. Gordaliza
A. Cagol
Mario Ocampo Pineda
Po-Jui Lu
...
Delphine Ribes
A. Depeursinge
C. Granziera
Henning Muller
Meritxell Bach Cuadra
UQCV
55
0
0
07 Apr 2025
Modeling of AUV Dynamics with Limited Resources: Efficient Online Learning Using Uncertainty
Modeling of AUV Dynamics with Limited Resources: Efficient Online Learning Using Uncertainty
Michal Tešnar
Bilal Wehbe
Matias Valdenegro-Toro
26
0
0
06 Apr 2025
Finer Disentanglement of Aleatoric Uncertainty Can Accelerate Chemical Histopathology Imaging
Finer Disentanglement of Aleatoric Uncertainty Can Accelerate Chemical Histopathology Imaging
Ji-Hun Oh
Kianoush Falahkheirkhah
Rohit Bhargava
57
0
0
27 Feb 2025
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Matias Valdenegro-Toro
Marco Zullich
BDL
PER
UQCV
UD
199
0
0
14 Jan 2025
Adaptive Sampling to Reduce Epistemic Uncertainty Using Prediction
  Interval-Generation Neural Networks
Adaptive Sampling to Reduce Epistemic Uncertainty Using Prediction Interval-Generation Neural Networks
Giorgio Morales
John W. Sheppard
74
0
0
13 Dec 2024
Optimizing Sensor Redundancy in Sequential Decision-Making Problems
Optimizing Sensor Redundancy in Sequential Decision-Making Problems
Jonas Nüßlein
Maximilian Zorn
Fabian Ritz
Jonas Stein
Gerhard Stenzel
Julian Schonberger
Thomas Gabor
Claudia Linnhoff-Popien
72
0
0
10 Dec 2024
Fine-Grained Uncertainty Quantification via Collisions
Fine-Grained Uncertainty Quantification via Collisions
Jesse Friedbaum
S. Adiga
Ravi Tandon
69
0
0
18 Nov 2024
Estimating Ego-Body Pose from Doubly Sparse Egocentric Video Data
Estimating Ego-Body Pose from Doubly Sparse Egocentric Video Data
Seunggeun Chi
Pin-Hao Huang
Enna Sachdeva
Hengbo Ma
Karthik Ramani
Kwonjoon Lee
DiffM
39
2
0
05 Nov 2024
MaskVal: Simple but Effective Uncertainty Quantification for 6D Pose
  Estimation
MaskVal: Simple but Effective Uncertainty Quantification for 6D Pose Estimation
Philipp Quentin
Daniel Goehring
37
0
0
05 Sep 2024
Prediction Accuracy & Reliability: Classification and Object
  Localization under Distribution Shift
Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift
Fabian Diet
Moussa Kassem Sbeyti
Michelle Karg
41
0
0
05 Sep 2024
How disentangled are your classification uncertainties?
How disentangled are your classification uncertainties?
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
UQCV
UD
PER
23
2
0
22 Aug 2024
The Dilemma of Uncertainty Estimation for General Purpose AI in the EU
  AI Act
The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act
Matias Valdenegro-Toro
Radina Stoykova
19
0
0
20 Aug 2024
MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty
MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty
Yongjin Yang
Haneul Yoo
Hwaran Lee
65
1
0
13 Aug 2024
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Seyeon Kim
Joonhun Lee
Namhoon Cho
Sungjun Han
Seungeon Baek
39
0
0
05 Aug 2024
Diffusion-BBO: Diffusion-Based Inverse Modeling for Online Black-Box Optimization
Diffusion-BBO: Diffusion-Based Inverse Modeling for Online Black-Box Optimization
D. Wu
Nikki Lijing Kuang
Ruijia Niu
Yi Ma
Rose Yu
47
0
0
30 Jun 2024
Unified Uncertainties: Combining Input, Data and Model Uncertainty into
  a Single Formulation
Unified Uncertainties: Combining Input, Data and Model Uncertainty into a Single Formulation
Matias Valdenegro-Toro
Ivo Pascal de Jong
Marco Zullich
UD
32
2
0
26 Jun 2024
LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal
  Data
LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data
Grigor Bezirganyan
Sana Sellami
Laure Berti-Équille
Sébastien Fournier
32
3
0
14 Jun 2024
Uncertainty Quantification on Graph Learning: A Survey
Uncertainty Quantification on Graph Learning: A Survey
Chao Chen
Chenghua Guo
Rui Xu
Xiangwen Liao
Xi Zhang
Sihong Xie
Hui Xiong
Mohit Bansal
AI4CE
34
1
0
23 Apr 2024
Energy-Efficient Uncertainty-Aware Biomass Composition Prediction at the
  Edge
Energy-Efficient Uncertainty-Aware Biomass Composition Prediction at the Edge
Muhammad Zawish
Paul Albert
Flavio Esposito
Steven Davy
Lizy Abraham
34
0
0
17 Apr 2024
Uncertainty Quantification for Gradient-based Explanations in Neural Networks
Uncertainty Quantification for Gradient-based Explanations in Neural Networks
Mihir Mulye
Matias Valdenegro-Toro
UQCV
FAtt
33
0
0
25 Mar 2024
Uncertainty Quantification for cross-subject Motor Imagery
  classification
Uncertainty Quantification for cross-subject Motor Imagery classification
Prithviraj Manivannan
Ivo Pascal de Jong
Matias Valdenegro-Toro
A. Sburlea
UQCV
35
0
0
14 Mar 2024
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for
  Specialized Tasks
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks
Bálint Mucsányi
Michael Kirchhof
Seong Joon Oh
UQCV
BDL
OODD
420
20
1
29 Feb 2024
Pretrained Visual Uncertainties
Pretrained Visual Uncertainties
Michael Kirchhof
Mark Collier
Seong Joon Oh
Enkelejda Kasneci
UQCV
399
8
1
26 Feb 2024
One step closer to unbiased aleatoric uncertainty estimation
One step closer to unbiased aleatoric uncertainty estimation
Wang Zhang
Ziwen Ma
Subhro Das
Tsui-Wei Weng
Alexandre Megretski
Lucani E. Daniel
Lam M. Nguyen
27
9
0
16 Dec 2023
Uncertainty Quantification in Machine Learning for Biosignal
  Applications -- A Review
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
27
1
0
15 Nov 2023
Body Knowledge and Uncertainty Modeling for Monocular 3D Human Body
  Reconstruction
Body Knowledge and Uncertainty Modeling for Monocular 3D Human Body Reconstruction
Yufei Zhang
Hanjing Wang
Jeffrey O. Kephart
Q. Ji
3DH
16
9
0
01 Aug 2023
Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
Luca Franco
Paolo Mandica
Konstantinos Kallidromitis
Devin Guillory
Yu-Teng Li
Trevor Darrell
Fabio Galasso
49
9
0
19 Jun 2023
Deep Gaussian Mixture Ensembles
Deep Gaussian Mixture Ensembles
Yousef El-Laham
Niccolò Dalmasso
Elizabeth Fons
Svitlana Vyetrenko
BDL
UQCV
25
2
0
12 Jun 2023
Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
  Uncertainty
Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing Uncertainty
Anshul Nayak
A. Eskandarian
Zachary R. Doerzaph
P. Ghorai
35
4
0
26 May 2023
Individuality in Swarm Robots with the Case Study of Kilobots: Noise,
  Bug, or Feature?
Individuality in Swarm Robots with the Case Study of Kilobots: Noise, Bug, or Feature?
Mohsen Raoufi
Pawel Romanczuk
Heiko Hamann
16
9
0
25 May 2023
Towards the Understanding of Receptivity and Affect in EMAs using
  Physiological based Machine Learning Method: Analysis of Receptivity and
  Affect
Towards the Understanding of Receptivity and Affect in EMAs using Physiological based Machine Learning Method: Analysis of Receptivity and Affect
Zachary D. King
Han Yu
T. Vaessen
I. Myin-Germeys
Akane Sano
14
0
0
16 Mar 2023
Multi-Head Multi-Loss Model Calibration
Multi-Head Multi-Loss Model Calibration
Adrian Galdran
Johan W. Verjans
G. Carneiro
M. A. G. Ballester
UQCV
10
7
0
02 Mar 2023
MooseNet: A Trainable Metric for Synthesized Speech with a PLDA Module
MooseNet: A Trainable Metric for Synthesized Speech with a PLDA Module
Ondvrej Plátek
Ondrej Dusek
25
2
0
17 Jan 2023
Selective classification using a robust meta-learning approach
Selective classification using a robust meta-learning approach
Nishant Jain
Karthikeyan Shanmugam
Pradeep Shenoy
OOD
26
2
0
12 Dec 2022
Materials Property Prediction with Uncertainty Quantification: A
  Benchmark Study
Materials Property Prediction with Uncertainty Quantification: A Benchmark Study
Daniel Varivoda
Rongzhi Dong
Sadman Sadeed Omee
Jianjun Hu
AI4CE
28
20
0
04 Nov 2022
A view on model misspecification in uncertainty quantification
A view on model misspecification in uncertainty quantification
Yuko Kato
David Tax
Marco Loog
28
3
0
30 Oct 2022
Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian
  Processes for Active Learning
Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian Processes for Active Learning
Zeel B Patel
Nipun Batra
Kevin P. Murphy
UD
PER
UQCV
29
1
0
20 Oct 2022
Is one annotation enough? A data-centric image classification benchmark
  for noisy and ambiguous label estimation
Is one annotation enough? A data-centric image classification benchmark for noisy and ambiguous label estimation
Lars Schmarje
Vasco Grossmann
Claudius Zelenka
S. Dippel
R. Kiko
...
M. Pastell
J. Stracke
A. Valros
N. Volkmann
Reinahrd Koch
43
34
0
13 Jul 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1