ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.12175
23
2

How disentangled are your classification uncertainties?

22 August 2024
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
    UQCV
    UD
    PER
ArXivPDFHTML
Abstract

Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction: Uncertainty from stochasticity in the data (aleatoric), or uncertainty from limitations of the model (epistemic). Generally, each uncertainty is evaluated in isolation, but this obscures the fact that they are often not truly disentangled. This work proposes a set of experiments to evaluate disentanglement of aleatoric and epistemic uncertainty, and uses these methods to compare two competing formulations for disentanglement (the Information Theoretic approach, and the Gaussian Logits approach). The results suggest that the Information Theoretic approach gives better disentanglement, but that either predicted source of uncertainty is still largely contaminated by the other for both methods. We conclude that with the current methods for disentangling, aleatoric and epistemic uncertainty are not reliably separated, and we provide a clear set of experimental criteria that good uncertainty disentanglement should follow.

View on arXiv
Comments on this paper