ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07087
21
2

MooseNet: A Trainable Metric for Synthesized Speech with a PLDA Module

17 January 2023
Ondvrej Plátek
Ondrej Dusek
ArXivPDFHTML
Abstract

We present MooseNet, a trainable speech metric that predicts the listeners' Mean Opinion Score (MOS). We propose a novel approach where the Probabilistic Linear Discriminative Analysis (PLDA) generative model is used on top of an embedding obtained from a self-supervised learning (SSL) neural network (NN) model. We show that PLDA works well with a non-finetuned SSL model when trained only on 136 utterances (ca. one minute training time) and that PLDA consistently improves various neural MOS prediction models, even state-of-the-art models with task-specific fine-tuning. Our ablation study shows PLDA training superiority over SSL model fine-tuning in a low-resource scenario. We also improve SSL model fine-tuning using a convenient optimizer choice and additional contrastive and multi-task training objectives. The fine-tuned MooseNet NN with the PLDA module achieves the best results, surpassing the SSL baseline on the VoiceMOS Challenge data.

View on arXiv
Comments on this paper