ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.00740
  4. Cited By
Path Development Network with Finite-dimensional Lie Group
  Representation

Path Development Network with Finite-dimensional Lie Group Representation

2 April 2022
Han Lou
Siran Li
Hao Ni
ArXiv (abs)PDFHTML

Papers citing "Path Development Network with Finite-dimensional Lie Group Representation"

39 / 39 papers shown
Title
Riemannian Residual Neural Networks
Riemannian Residual Neural Networks
Isay Katsman
Eric Chen
Sidhanth Holalkere
Anna Asch
Aaron Lou
Ser-Nam Lim
Christopher De Sa
66
13
0
16 Oct 2023
Feature Transportation Improves Graph Neural Networks
Feature Transportation Improves Graph Neural Networks
Moshe Eliasof
E. Haber
Eran Treister
GNN
91
11
0
29 Jul 2023
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Alessio Gravina
D. Bacciu
Claudio Gallicchio
GNN
85
57
0
18 Oct 2022
projUNN: efficient method for training deep networks with unitary
  matrices
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
70
32
0
10 Mar 2022
Efficiently Modeling Long Sequences with Structured State Spaces
Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu
Karan Goel
Christopher Ré
217
1,832
0
31 Oct 2021
Combining Recurrent, Convolutional, and Continuous-time Models with
  Linear State-Space Layers
Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers
Albert Gu
Isys Johnson
Karan Goel
Khaled Kamal Saab
Tri Dao
Atri Rudra
Christopher Ré
130
610
0
26 Oct 2021
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel
  Sizes
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
David W. Romero
Robert-Jan Bruintjes
Jakub M. Tomczak
Erik J. Bekkers
Mark Hoogendoorn
Jan van Gemert
165
83
0
15 Oct 2021
CKConv: Continuous Kernel Convolution For Sequential Data
CKConv: Continuous Kernel Convolution For Sequential Data
David W. Romero
Anna Kuzina
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
71
126
0
04 Feb 2021
Neural Rough Differential Equations for Long Time Series
Neural Rough Differential Equations for Long Time Series
James Morrill
C. Salvi
Patrick Kidger
James Foster
Terry Lyons
AI4TS
73
133
0
17 Sep 2020
HiPPO: Recurrent Memory with Optimal Polynomial Projections
HiPPO: Recurrent Memory with Optimal Polynomial Projections
Albert Gu
Tri Dao
Stefano Ermon
Atri Rudra
Christopher Ré
134
536
0
17 Aug 2020
Lipschitz Recurrent Neural Networks
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
88
112
0
22 Jun 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
160
697
0
18 Jun 2020
Neural Controlled Differential Equations for Irregular Time Series
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
129
483
0
18 May 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
Trivializations for Gradient-Based Optimization on Manifolds
Trivializations for Gradient-Based Optimization on Manifolds
Mario Lezcano Casado
125
128
0
20 Sep 2019
Latent ODEs for Irregularly-Sampled Time Series
Latent ODEs for Irregularly-Sampled Time Series
Yulia Rubanova
Ricky T. Q. Chen
David Duvenaud
BDLAI4TS
93
260
0
08 Jul 2019
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Xuanqing Liu
Tesi Xiao
Si Si
Qin Cao
Sanjiv Kumar
Cho-Jui Hsieh
100
138
0
05 Jun 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDaCMLAI4TS
96
302
0
29 May 2019
Deep Signature Transforms
Deep Signature Transforms
Patrick Kidger
Patrick Kidger
Imanol Perez Arribas
C. Salvi
Terry Lyons
SLR
157
131
0
21 May 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple
  Parametrization of the Orthogonal and Unitary Group
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
50
200
0
24 Jan 2019
The UEA multivariate time series classification archive, 2018
The UEA multivariate time series classification archive, 2018
A. Bagnall
Hoang Anh Dau
Jason Lines
Michael Flynn
J. Large
A. Bostrom
Paul Southam
Eamonn Keogh
AI4TS
186
429
0
31 Oct 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
457
5,176
0
19 Jun 2018
Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN
  Training
Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training
Bojian Zheng
Abhishek Tiwari
Nandita Vijaykumar
Gennady Pekhimenko
64
44
0
22 May 2018
Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
Pete Warden
103
1,627
0
09 Apr 2018
An Empirical Evaluation of Generic Convolutional and Recurrent Networks
  for Sequence Modeling
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
Shaojie Bai
J. Zico Kolter
V. Koltun
DRL
99
4,851
0
04 Mar 2018
Learning Longer-term Dependencies in RNNs with Auxiliary Losses
Learning Longer-term Dependencies in RNNs with Auxiliary Losses
Trieu H. Trinh
Andrew M. Dai
Thang Luong
Quoc V. Le
94
180
0
01 Mar 2018
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
105
979
0
22 Feb 2018
Dilated Recurrent Neural Networks
Dilated Recurrent Neural Networks
Shiyu Chang
Yang Zhang
Wei Han
Mo Yu
Xiaoxiao Guo
Wei Tan
Xiaodong Cui
Michael Witbrock
M. Hasegawa-Johnson
Thomas S. Huang
92
304
0
05 Oct 2017
A signature-based machine learning model for bipolar disorder and
  borderline personality disorder
A signature-based machine learning model for bipolar disorder and borderline personality disorder
Imanol Perez Arribas
K. Saunders
G. Goodwin
Terry Lyons
159
97
0
22 Jul 2017
Stable Architectures for Deep Neural Networks
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
156
735
0
09 May 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
438
1,824
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
815
3,302
0
24 Nov 2016
Learning Spatial-Semantic Context with Fully Convolutional Recurrent
  Network for Online Handwritten Chinese Text Recognition
Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition
Zecheng Xie
Zenghui Sun
Lianwen Jin
Hao Ni
Terry Lyons
85
124
0
09 Oct 2016
A Primer on the Signature Method in Machine Learning
A Primer on the Signature Method in Machine Learning
I. Chevyrev
Andrey Kormilitzin
508
218
0
11 Mar 2016
Unitary Evolution Recurrent Neural Networks
Unitary Evolution Recurrent Neural Networks
Martín Arjovsky
Amar Shah
Yoshua Bengio
ODL
84
771
0
20 Nov 2015
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
Quoc V. Le
Navdeep Jaitly
Geoffrey E. Hinton
ODL
105
722
0
03 Apr 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CEAIMat
270
6,791
0
03 Sep 2014
Rough paths, Signatures and the modelling of functions on streams
Rough paths, Signatures and the modelling of functions on streams
Terry Lyons
219
138
0
18 May 2014
1